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• International Workshop on Musical Metacreation: 
– MUME 2012@AAAI AIIDE - Stanford U.

– MUME 2013@AAAI AIIDE - Northeastern U.

– MUME 2014@AAAI AIIDE - Univ. North Carolina

– MUME 2016@ICCC - Paris

– MUME 2017@ICCC – Georgia Tech

– MUME 2018@ICCC - Salamanca

• Generative Music Concerts:
– MUME-WE 2013@ISEA2014, Sydney 

– MUME-WE 2014@NIME2014 (Oto), London

– MUME-WE 2015@ISEA2015, Vancouver

– MUME@ICCC2017, Georgia Tech

– MUME@ICCCC2018, Salamanca

• Records / releases / performances

• Tutorials: 
– MUME-tut@NIME2015

– MUME-tut@IJCAI2015
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About Us  



- Computer scientists?
- AI, ML? 
- Computer music?
- Musicians?
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About you



• Opening 
• Name that MuMe: Introduction to Musical Metacreation (30 mins + 15 mins Q&A)
• MuMe and Variation: Classification, Ontology and Autonomy (45 mins + 15 mins Q&A)
• Coffee Break
• Walking on the MuMe: Interfaces Design, Performance and Creative MuMeing (15 mins + 15 mins Q&A)
• Fruits of the MuMe part I: Current approaches, including Evolutionary Computation, Machine Learning and 

Statistical Methods, Heuristic and Expert Systems (60 mins + 15 mins Q&A)
• [lunch break]
• Fruits of the MuMe part II: Current approaches, including Evolutionary Computation, Machine Learning and Statistical Methods, Heuristic and 

Expert Systems (60 mins + 30 mins Q&A)

• Coffee Break
• A Kind of MuMe: Evaluation of MuMe Systems, Present and Future (45 mins + 15 mins Q&A)

– Presentation of Evaluation methods and trends based on concrete examples

• MuMe Over (30 mins)
– Critical discussion and future directions (open discussion led by tutorial organisers)
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Outline of the Tutorial

http://musicalmetacreation.org/mume-nime2014/tutorial/download/MUME@NIMEtut-ontology.pdf
http://musicalmetacreation.org/mume-nime2014/tutorial/download/mume_meets_nime_interfaces.pdf
http://musicalmetacreation.org/mume-nime2014/tutorial/download/MUME@NIMEtut-ontology.pdf
http://musicalmetacreation.org/mume-nime2014/tutorial/download/MUME@NIMEtut-ontology.pdf
http://musicalmetacreation.org/mume-nime2014/tutorial/download/mume_meets_nime_background_of_techniques.pdf
http://musicalmetacreation.org/mume-nime2014/tutorial/download/mume_meets_nime_evolution_and_dynamical_systems.pdf
http://musicalmetacreation.org/mume-nime2014/tutorial/download/mume_meets_nime_conclusion.pdf


E N G A G I N G  T H E  W O R L D

Name that MuMe
Introduction to Musical Metacreation 

Philippe Pasquier
Associate Professor
School for Interactive Arts + Technology, 
Simon Fraser University



Artificial intelligence is the science of having machine 
solve problems that do require intelligence when 
solved by human.

Adapted from Simon (1960).

Artificial Intelligence
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• AI has been tremendously successful at rational problem 
solving (optimality is well defined).
– AI systems: 

• Fly planes (goals), 
• Regulate nuclear plants (constraints), 
• Design electric circuits (objective function), 
• Automated negotiation (maximizing utility function and finding 

Pareto dominant solutions), 
• Diagnose diseases (probability distribution) 
• Play chess (win/lose) 
• Play Jeopardy (good/bad answer). 
• …

– The list is seemingly endless, but can machines be creative?

AI is Ubiquitous
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• Computational Creativity is a new and fast growing 
scientific field that is exploring the partial or complete 
automation of creative processes. 

• A.k.a artificial creativity: endowing machines with 
creative behaviors.

• As a field, it investigates:
– creativity as it is: striving to understand and simulate 

human creativity (cognitive science)
– creativity as it could be: processes that we know humans 

to be incapable of (at least without machines). 

Computational Creativity
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• Computational creativity departs from AI when the 
notion of optimality is ill-defined: 
– No definitive answer, goal states, Pareto dominance, 

objective function, utility function, preference relations, …
• Creative tasks as those for which there is no clear 

“best” outcomes.
– No such thing as the best design, choreography, music 

composition, interpretation of a piece, level for a video 
game, drawing, painting, narrative, poetry, joke, …

Computational creativity
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Metacreation

12

Generative Art Computational Creativity

Metacreation

“the use of an autonomous system for art 
making” Philip Galanter (2003)

Scientific domain that focuses on the 
modeling and study of computational 
processes that achieve creative tasks.



• Partially or completely automate musical
creative tasks:

MUME: Musical Metacreation

Generic / ScientificArtistic / Specific

Generative Music Simulation of Musical Creativity

Musical Metacreation



• Generative Music 1 (1996) was released as a 
floppy disk in 1996 by Brian Eno

• Icarus (Ollie Bown and Sam Britton)
An album in 1000 variations (2012)
Fake Fish Distribution
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Generative Music as Art



Computational Creativity
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I
Pachet, Francois The Continuator: Musical Interaction with Style. In ICMA, 
editor, Proceedings of ICMC, pages 211-218, Göteborg, Sweden, September 2002 ICMA.
Best paper award



Interdisciplinary MUME

Musical 
Metacreation

Music (cognition, 
composition, 

interpretation, 
production)

Musicology
Philosophy
Sociology

Design

Generative Arts
Interactive Arts

Computer Music, 
Digital Signal 
Processing

Artificial 
Intelligence, 
Artificial Life 

Machine 
Learning



E N G A G I N G  T H E  W O R L D

MuMe and Variations
Classification, Ontology, and History

Philippe Pasquier
Associate Professor
School for Interactive Arts + Technology, 
Simon Fraser University



• Partially or completely automate musical 
creative tasks.

• What do we mean by creative/creativity?
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Simulation of Musical Creativity



• Creativity is the ability to come up with ideas 
or artifacts that are original, and valuable
(adapted from Margareth Boden, 2004)

• P-creativity: psychological creativity (novel and 
valuable for the individual), a.k.a mundane or 
everyday creativity 

• H-creativity: historical creativity (novel and valuable 
for the group, i.e. humanity), a.k.a eminent creativity
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Defining Creativity



• Three types of creativity (Boden, 2006):
1. Exploratory creativity
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Defining Creativity



• Three types of creativity (Boden, 2006):
1. Exploratory creativity
2. Combinatorial
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Defining Creativity



• Three types of creativity (Boden, 2006):
1. Exploratory
2. Combinatorial
3. Transformational
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Defining Creativity



MUME Problems
• Partially or completely automate musical creative tasks
• Musical Metacreation addresses a variety of problems:

– Classic cognitive science and computer music issues:
– Music perception, recognition, classification
– Music representation
– Music cognition

– Composition: generating a score
– Interpretation: audio rendering of a composition
– Improvisation: composition and interpretation
– Accompaniment: playing along with a composition or an 

interpretation/improvisation
– Continuation: taking over when interpretation/composition 

stops.
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There are (too) many MuMe problems…

• Harmonic progressions [Eigenfeldt and Pasquier 2010; Whorley et 
al. 2010; Groves 2013; Manaris et al. 2013; Pachet and Roy 2014]; 

• Rhythm generation [Eigenfeldt 2008; Chordia and Rae 2010]; 
• Melodic generation [Bosley et al. 2010; Sarwate and Fiebrink 2013]; 
• Orchestration [Handelman et al. 2012]; 
• Harmonization [Pachet and Roy 2001; Simon et al. 2008; Pachet and 

Roy 2014]; 
• Affective interpretation [Kirke and Miranda 2009]; 
• Affective composition [Birchfield 2003; Wallis et al. 2011; Eigenfeldt

et al. 2015]; 
• Automatic mixing [Reiss and Perez Gonzalez 2008; Reiss 2011]; 
• Soundscape composition [Eigenfeldt and Pasquier 2011; Thorogood

et al. 2012].
• Automatic Mastering
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Level of autonomy

• Many systems are interactive. 
• Enable computer-assisted creativity, creativity 

support tools, computer-assisted composition,  …
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Purely reactive systems 
(no autonomy, no pro-activity) 

Purely generative 
(On/Off) 



Musical Metacreation
• Characteristics of the systems:
– Music representation: symbolic vs. audio signal
– Online: various levels of real-time
– Offline: generated ahead of time (the generation 

itself can occur slower or faster than real-time)
– Corpus-based: the system has been exposed to 

music (symbolic notation or audio signal). 
– Non corpus-based: generated from scratch
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Computational Creativity

• Style imitation: 
Given a corpus C={C1, …Cn} representative of style S, 
generate new instances that would be classified has 
belonging to S by an unbiased observer.

• The Metacreation Lab produce corpus-based style 
machines: 
– style imitation, 
– style interpolation, 
– style combination, 
– style transformation, 
– style extrapolation,…
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• We distinguishes the following elements for a 
typology of generative system in generative art 
and computational creativity:
– Domain (symbolic or audio)
– Creative Tasks
– Level of autonomy
– Genericity/specificity of the system
– Levels of interactivity and type of inputs
– Relation to time
– Architecture and algorithms

Typology of MuMe



1. Fundamental research on creative process / AI / ML
2. Rational problem solving is not the main use of 

computers (anymore): 
Creative and entertainment computing is.

3. The move from linear to non-linear media
entails an explosion of the number of assets   needed:
– Ex: World of Warcraft: 12 millions players, playing 20 hours 

per week on average!
– Music for game: copyright free, adaptive, personalized,…
– Visuals, animations, story lines, levels,  …

4.  Software are mostly inert (no IHCI).

29

Why does it matter?
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A brief History of MuMe

• It does not start with computers. 
• Guido d’Arezzo (one of the pioneer of musical notation) 

had the idea of an algorithmic composition associating a 
note to each vowels of a text as early as 1026

• Conceptual machines aside, it starts with early 
automaton



– With the development of energy sources some processes start to be 
automatized, and more and more machines are being built.

– Very early, water was used and hydraulic energy started to be 
exploited. 

– The hydraulic organ or Hydrolis was conceived 3rd century BC in 
ancient greece. It does not need the human to blow air anymore.

– Fountains, which seem to defy the laws of gravity become a trend. 
The siphon that makes water travel upward is attracting curiosity (as 
it is magic to those that are not in the know) 

– This is the emergence of automaton
– The polymath and mechanical genius, al Jazari (12th century), is as 

known for his hydraulic automaton, than for his ingenuous 
engineering 

– He produced a band of musical automaton.
– Al-Jazari created a boat with four automatic musicians that floated 

on a lake to entertain guests at royal drinking parties. It was 
programmable so that each automatic musician could could play 
different patterns.

31

Early Automaton



- Around the 14th century, and with the development of 
physics hydrolic energy is supplemented with mecanical
energy and steam powered systems. 

- Automatons become more common: 
• A wide variety of automaton are produced ranging from 

pieces of furniture and instruments like the barrel organ, 
to androids and animal automaton like Vaucanson flute 
player, tambour player and duck.

• The duck, for example is made of over 400 moving parts, 
allowing the automaton to eat, digest and defecate. 

32

Early Automaton



• Besides the cam, the pin cylinder was invented.  
• Although it was not thought of in terms of information and 

programming at the time, It did inspire the automatic loom, 
which in turn influenced the design of the first computers.

• Kircher, hydraulic organ with dancing skeleton from 1650.
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Early Automaton
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Walking on the MuMe

Families of approaches with examples



• Chance operation
• Chaotic systems, Fractals, Cellular Automata
• Substitution Systems: Grammars, L-Systems, 

Augmented Transition Networks
• Stochastic / Markovian approaches
• Search-based systems
• Agent and MultiAgent Systems
• Evolutionary Computing
• Neural Networks

36

MUME Algorithms



• Generative art implies for the artist to sacrifice 
(or more accurately “delegate”) some control in 
favour of a process. 

• Randomness, noise, and weighted randomness 
(probability distributions, density functions) have 
been extensively used in music.

• These allow to generate variety:
– The artist defines a space with various parameters that can take values within 

certain ranges.
– These values are then randomly selected and an instantiation of the artwork is 

completed.
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Chance Operations



• Aleatoric music exemplifies the use of randomness in 
in music:
– “a process is said to be aleatoric […] if its course is 

determined in general but depends on chance in detail” 
(German physist, Werner Meyer-Eppler 1957, 55).

– Became popular with the musical dice games of the late 
18th and early 19th century. 

– Marcel Duchamp composed aleatoric pieces as early as 
1913, but John Cage's Music of Changes (1951) is often 
considered the first piece to be conceived largely through 
random procedures (Randel 2002, 17). 

– Aleatoric music thrived throughout the 20th century and to 
these days with composers like Charles Ives, Henry Cowell, 
Pierre Boulex, Karlheinz Stockhausen, and many more.
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Aleatoric Music

https://www.youtube.com/watch?v=eAjKD12RkEY


• Franco-greek composer and 
architect Iannis Xenakis was a 
fervent user of randomness and 
stochastic systems in music and 
architecture.
Applying probability theory and 
probability distribution to music 
composition. 

In Metastasis (1954) or
Pithoprakta (1956) using 
probability theory for composition.
Xenakis made all the calculations 
by hand and became convinced 
that computers would be useful ;)



Achorripsis (1957)

Almost everything is stochastically decided. 
The pitch themselves are chosen at random, there is no link 
between the notes.
The density of events is also determined stochastically…as 
indicated by the colors in this part of the composition.
This pointillist style sounded a bit like the serialist composition 
of the time.



•
Buying some time on the only IBM computer in Paris at the time, 
he went on to develop his first computer generated 
compositions.
ST series (1962) are compositions entirely generated by an 
algorithms which lie down all the stochastic choices that will 
generate the piece:
ST/4 for quartet, 

• ST/10 for mixed ensemble, 
• ST/48 for orchestra.



Eventually, Xenakis turned himself to random walks first 
for digital synthesis and then for composition.

For example, the piece MIKKA (1971) is a solo for violin 
that is a direct mapping of a random walk on pitch. It is 
interpreted as a giant glissando.

This is the score of Evryali (1973), where you can clearly 
see some kind of random walk type function.



• In modern days, artists use randomness to bring up the 
tension between choice (or control) and chance, 
question intentionality, and actively explore the creative 
possibilities of the arbitrary and the accidental.

• In most cases, randomness is deployed as a strategy for 
exploratory creativity.

• It can be used to simply bring variability (“canned 
chance”), or when more dimensions are left un-fixed, as 
a tool for liberating creativity from rational thought.
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Conclusion on Chance as generator.



• Chaos theory is the field of mathematics that study 
dynamical systems that are sensitive to initial conditions. 

• Chaotic systems are not to be confused with randomness, 
as chaotic system typical do not rely on any stochastic or 
otherwise non-deterministic operation. They are always 
deterministic. They appear to be linked with randomness 
simply because the future states of chaotic systems can 
only be predicted in the short term (a few iterations, or 
time steps).

• Unpredictability is not randomness. Many phenomenon 
that were thought to be random are actually chaotic. The 
good news is that short term predictions are possible. 
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Chaotic Systems



• In the 80s, Chaos theory was applied to music composition: applied to pitch, duration, dynamic 
level, orchestration,… Chaotic, or non-linear dynamic systems are useful because they can easily 
generate repetition and variations in periodic and quai-periodic modes, or break out to more 
unpredictable behaviors in chaotic mode.

• Four pioneers of these methods are Jeff Pressing, Michael Gogins, Rick Bidlack, and Jeremy Leach.

• Chaotic systems have also been applied at the micro-level in the context of sound synthesis: 
Composers Barry Truax and Agostino DiScipio did experiment with applying chaos to granular 
synthesis so that a non-linear dynamic system is applied to the re-ordering of the grains of a given 
sound file. The different modes of the system allow to navigate textures that are very stable and 
close to the original sound, to more chaotic  ones that deviate completely.

• To illustrate this, here is an excerpt of “Piccoli-ritmi” (1996), by Agostino Scipio

45

Chaos theory in music



Cellular Automata

• Cellular automata were developed in the 1950s by Konrad
Zuse, Stanislav Ulam, and John Von Neumann 

• A cellular automaton consists in:
– A universe: A n-dimensional grid of cells that can be in a finite number 

of states. 
– A transition rule that indicates for a given cell what state it should be 

in at the next time step given: (a) its current state and (b) the states of 
the cells in its neighborhood.



1-Dimentional Cellular Automata

– The neighborhood of a cell consists in the cell and its adjacent cells. 
We consider a radial neighborhood of radius r. Typically, r=1.  

– Example, rule number 30:

– There are 28=256 different rules for 1-dimensional automata with r=1.

Neighborhood 111 110 101 100 011 010 001 000
Resulting state 0 0 0 1 1 1 1 0

r r



Example

Initial State X t0

Generation 1 X X X t1

Gen 2 X X X t2

Gen 3 X X X X X X t3

Gen 4 X X X X t4

Gen 5 X X X X X X X X X t5

Gen 6 X X X X X t6

Rule 30: Neighborhood 111 110 101 100 011 010 001 000
Resulting state 0 0 0 1 1 1 1 0

Cellular automaton:



Class 3 Automaton - rule 30
Neighborhood 111 110 101 100 011 010 001 000
Resulting state 0 0 0 1 1 1 1 0

Cellular automata can generate chaotic structures and are often used as 
random number generators.



Class 4 Automaton – rule 90

Cellular automata can generate self-similar structures 
(e.g., Sierpinski triangle)

Neighborhood 111 110 101 100 011 010 001 000

Resulting state 0 1 0 1 1 1 1 0



Class 3: Rule 45

Class 4: Rule 54Class 2: Rule 62Class 1: Rule 54



Printout of CA states used in Iannis
Xenakis composition Horos in 1986.

Cellular Automaton



Noisesquare, Mo Zareei, Del Carnegy and Ajay 
Kapur, 2015.



• Pitch: Each cell corresponds to a note
• Rhythm: Each generation corresponds to a time unit (say a 1/16th of 

a beat). 

Screenshot of early CA-
based system by Peter 
Beyls in he early 1980s.

Example of mapping of 1-dimentional CA to music. 



Screenshot of CAMUS 3D (2001), Eduardo Miranda and his 
team. 



Excerpt of the piece Hybrid Rechner, Automata 
48, by NoizeLab aka David Burraston, 2013.
– Play 36 sseconds of this track: 

https://cataclyst.bandcamp.com/album/automata
-48



CA-based Software for Music

• Amongst the many software allowing to use CA for music 
production:
– Cellular Automata Music, 2000
– FractMus, 2000
– York’s Cellular Automata Workstation, 2005
– Cellular Grid Machine, 2008
– Softstep MIDI sequencer, 2005.



ChaosSynth, NYR Sound, 2005. 



Cellular Automata for Sound synthesis

In LASy (Linear Automata Synthesis), by Jacques Chareyron, 1990:
• A 1D CA of 512 cells is viewed as a wavetable in which the cell values are the 

sample values. 
• 4096 values/states per cell: (212 corresponding to the 12-bit depth encoding of the 

soundwave).



• Randomness: 
– Pro: cheap, versatile, discrete or continuous, scale 

to all media and dimensions
– Cons: limited to be applied to existing parametric 

spaces
• Chaos, Fractals, and Cellular Automaton
– Pro: cheap, several modes to explore
– Cons: hard to control, deterministic (but there 

ways around this)
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Pros and Cons
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Grammars and state machines



Generative Grammar in music

Philippe Johnson-Laird’s context-free grammars (type 2) rules to 
generate 8-measures chord sequences in Jazz (2002)

62



63
Structure underlying the piece Off Mirror by Thelemonius Monk  

Generative Grammar in music



Impro-Visor 
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Bob Keller et al. (2005-now)



Impro-Visor
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Augmented Transition Networks (ATN)
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David Cope EMI (Experiments in Musical Intelligence) is a system that does 
style imitation using a recombinant approach based on ATN (1996-).



L-system  

– The Koch curve as a
– L-system rule: 
F è F+F--F+F

– Initiator: F
– phi = 60° (angle), 
– L=2 (length)

F

F + F - - F + F

F + F - - F + F + F + F - - F + F - - F + F - - F + F + F + F - - F + F



Przemyslaw Prusinkiewicz, Score Generation with L-systems, 
International Computer Music Conference, ICMC, 1986.
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“Cells”, Hanspeter
Kyburz, 1993. For 
saxophone and 
ensemble
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Play audio from link.



“Pain Growing”, Luke Dubois, 2003.
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Conclusion on Substitution Systems

– Pro: 
• Capture contextual and hierarchical  aspects
• Capture pre-existing knowledge
• Human readable
• Can be learned

– Con: 
• Not adapted to multidimensional sequences (NLP)
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Markov Models

• Markov assumption: the future only depends on the 
present or a limited part of the past, say the d past 
events. 
P(Xt|Xt-1,Xt-2,…,X1) = P(Xt|Xt-1,…,Xt-d) 

• d is the order of the Markov model:
– Order 0: probability distribution of the events, P(Xt)
– Order 1: conditional probability distribution, P(Xt|Xt-1)
– Order 2: conditional probability distribution P(Xt|Xt-1,Xt-2)
– Order d: conditional distribution (transition table) over the d

previous events 72

Xt Xt+1Xt-1Xt-2Xt-3



Markov Model
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Note B2 C4
#

D4 E4 F4# G4 G4
#

A4 B4 C5
#

D5 E5

B2 1

C# 1

D 1/16 1/16 2/16 5/16 3/16 1/16 1/16 1/16 1/16

E 1/16 3/8 3/16 1/4 1/16 1/16

F# 1/8 1/4 5/16 1/8 1/8 1/16

G 1/4 3/16 3/8 3/16

G# 1

A 1/16 5/16 1/16 1/16 4/16 3/16 1/16

B4 9/13 2/13 2/13

C5# 1/2 1/2

D5 1/4 7/16 3/16 1/16 1/16

E5 6/16 10/16

Example using the corpus of 11 Stephen Foster songs from [Olson, 1967]

Next note

Cu
rr

en
t 

no
te Each line 

sums to 1



Markov Model
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Note B2 C4
#

D4 E4 F4# G4 G4
#

A4 B4 C5
#

D5 E5

B2 1

C# 1

D 1/16 1/16 2/16 5/16 3/16 1/16 1/16 1/16 1/16

E 1/16 3/8 3/16 1/4 1/16 1/16

F# 1/8 1/4 5/16 1/8 1/8 1/16

G 1/4 3/16 3/8 3/16

G# 1

A 1/16 5/16 1/16 1/16 4/16 3/16 1/16

B4 9/13 2/13 2/13

C5# 1/2 1/2

D5 1/4 7/16 3/16 1/16 1/16

E5 6/16 10/16

Example using the corpus of 11 Stephen Foster songs from [Olson, 1967]

Next note

Cu
rr

en
t 

no
te Each line 

sums to 1



Markov models have been extensively used for 
music generation:

– The ILLIAC Suite, Lejaren Hiller and Leonard 
Isaacson, Fourth movement, 1956. Know to be the 
first computer generated composition! 

– Xenakis “Analogique A” (1958)

– Brooks et al. (1993)

– Ponsford, Wiggins et al. “Sarabande” (1999)

– Pachet “Continuator” (2002) 

– …
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• BeatBack for interactive or 
augmented drumming:
– Uses drum zoning
– Variable Order Markov 

Models (VOMM)
– Call-response and 

accompaniment

76

BeatBack: Interactive Percussion System
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META-MELO
With Nicolas Gonzales

ISMIR 2013

•Challenge:
• Qualifying the bias of 
corpus-based systems 

• Solution: 
• Implement three models:

• VOMM
• Factor Oracle
• MusiCog

• Test with three corpuses
•Experiment: 

•These systems work! 
• https://soundcloud.com/pournam/ambient

•Ongoing:
– Fixed point / iterative drift?
– Combinatorial creativity?



Harmonic Progression Generator

• It is doing style imitation, at human-competitive levels.
• The system is available online (open source and free!).
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Style Machine
•Generative EDM
•How? 

• Manual analysis of corpus by 
experts (composers, producers)

• Our machine learning algorithm
Genetic algorithm / VOMM

•Validation: ongoing!
• Confuses classifiers: pieces gets 
classified properly!

• Confuses listeners
• Public shows since 2013:Algorave, …
• Album on ChordPunch (UK)
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With Arne Eigenfeldt, Christopher Anderson
Sound and Music Computing 2011

Computation Creativity, 2013
GECCO, 2013



Markov Models

• Advantages:
– Intuitive and easy to understand
– Computationally cheap

• Issues:
– Randomness in the output, with clear lack of overall structure
– Worse with low orders, limited choices with higher orders (e.g., 

AFGBBFGCFGDFG#EFG would be regenerated with order 3)
– “equivalence/transient/recurrent classes”: strong internal 

connection, few connections between classes (one gets stuck 
for a while, or even fail to leave them at all) [Kevin Jones, 1981]

– Limited to one-dimensional symbolic sequences (e.g., natural 
language processing)

– Limited to style imitation (although Xenakis was using it for 
computer-assisted composition)
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Hidden Markov Models (HMM)

83

Used to learn coupling: 
- Accompaniment, harmonization (on a given melody, in a given style)
- Interpretation (of a given score)



Substitution systems

• Rule-based system, substitution systems or 
production systems:
– Generative grammars
– L-systems 
– Shape grammars
– Automaton:

• Transition networks
• Augmented transition networks
• Petri nets

– Markov Chains
– Hidden Markov Chains
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Search Based systems
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Creativity as a search

• Modeling creativity as a search 
assumes:
– A search space or conceptual state 

that corresponds to all the 
possible artifacts, behavior, or 
candidates that would be the 
product of a creative task. 

– A representation and structure for 
the search space: set of 
parameters, list, tree, graph, …

– A search strategy for exploratory 
creativity: 
• Generate and test 
• Enumeration



Online accompaniment interpretation system, Roger 
Danenberg, 1984. 

Heuristic search



Database search
• Audio Metaphor: Soundscape generation engine
• Approach:

– User input: an expression + desired affect 
(pleasantness, eventfulness) + duration  

– Sounds retrieval from 
tagged db (WSP, freesound)

– Segmentation and 
classification of 
background and 
foreground sounds

– Pleasantness and eventfulness
classification

– Mixing and audio rendering
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With Miles Thorogood
Sound and Music Computing, 2012

Computational Creativity, 2013
Sound and Music Computing, 2014

Audio Mostly, 2015

www.AudioMetaphor.ca
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Audio Metaphor 

A waterfall in Thailand
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Audio Metaphor 

A city in the bush



Audio Metaphor 
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A quenching rain drenched my burning head



• Chance operation
• Chaotic systems, Fractals, Cellular Automata
• Substitution Systems: Grammars, L-Systems, 

Augmented Transition Networks
• Stochastic / Markovian approaches
• Search-based systems
• Agent and MultiAgent Systems
• Evolutionary Computing
• Neural Networks
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MUME Algorithms
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Agents and Multiagents Systems



Agents and Multiagents Systems
• An artificial agent is a computer system that is 

capable of autonomous action on behalf of its 
user or designer.

• A multiagent system is one that consists of a 
number of agents, which interact with their 
environment (including with one-another)
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Agent

Environment

input output



Agent architectures

• Three types of agent architectures:
– Cognitive: maintain internal symbolic representations

• Deliberative architectures: reasoning and planning

– Reactive: no explicit representation of the environment 
and focus on behavioural rules
• Reflex: no internal states (just mapping inputs to outputs)
• Reactive: with internal states (but not cognitive)

– Hybrid: mixing reactive and cognitive components to 
balance reactiveness and deliberativeness
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Musical Agents: Voyager

• Early example of “cognitive agent” working online, and 
interacting with live musician in the context of Jazz 
improvisation (free Jazz).

• The system was programmed in Forth in 1986
• Voyager Duo 4, George Lewis, 1986
• Play 38 seconds of: 

https://www.youtube.com/watch?v=hO47LiHsFtc&list=RD
hO47LiHsFtc#t=12
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https://www.youtube.com/watch?v=hO47LiHsFtc&list=RDhO47LiHsFtc
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Interactive Trio - George Lewis (2011)

Lewis, George E. "Too Many Notes: 
Computers, Complexity and Culture in 
Voyager." Leonardo Music Journal, vol. 
10, 2000, pp. 33-39.

Musical Agents: Voyager



• Coming Together, Arne Eigenfeldt, 2010
• Using the BDI architecture
• Play 20s from 4:25 to 4:45
• https://www.youtube.com/watch?v=avvl77nrmnw

Musical MultiAgents Systems



Kinetic Engine
Arne Eigenfeldt



Musical Metacreation
•Closure-based Cueing Model (CbCM)
• Challenge: learning and generating
music (symbolic)

• Solution: 
• Another attempt at a hierarchical, 
deep learning, model of musical 
cognition

• Based on notions from the musical 
perception and cognition literature

• Validation: it actually works!
• Applied in the ManuScore
computer-aided composition 
software

• Used for actual compositions 
(instrumental contemporary music):
presented in concerts.

• Empirical evaluation with 42 
participants: could not segregate
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With James Maxwell and Arne Eigenfeldt
Sound and Music Computing 2011

Int. Computer Music Conference, 2012



MusiCog

Experiri. MusiCog used by James B. Maxwell for 
computer-assisted composition in the Manuscore
environment. Yaletown string quartet, 2011.



MUSEBOTS framework



Musical cognitive agents

• Musical cognitive agents:
– Performing on their own
– Performing alongside with humans
– Helping humans to create new material



Agent architectures

• Three types of agent architectures:
– Cognitive: maintain internal symbolic representations

• Deliberative architectures: reasoning and planning

– Reactive: no explicit representation of the environment 
and focus on behavioural rules
• Reflex: no internal states (just mapping inputs to outputs)
• Reactive: with internal states (but not cognitive)

– Hybrid: mixing reactive and cognitive components to 
balance reactiveness and deliberativeness
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Subsumption Architecture
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BeatBender: multi-agent rhythm generation
• Challenge: non-corpus based

generation of rhythmic patterns
• Our approach:

– Using reactive agents to 
create rhythmic patterns

– Using subsumption agent 
architecture

• Experiments on a sample of 
10+10 rhythms show that:
– Humans prefer BeatBender

rhythms over human 
composed ones

– They find them more natural 
(less artificial)
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Musical Metacreation With Aaron Levisohn 
ACM ACE 2008



Boids and Swarms

• A basic boid agent is implementing three simple 
behavioral rules:
1. Avoidance: move away of a flock that is too close.
2. Imitate: fly in the average direction/speed of the flock by 

averaging the velocity and direction of the other boids in 
the neighborhood.

3. Center: Minimize exposure to the flock exterior by drifting 
towards the perceived center of the flock.





Reactive agents – Swarm Music

Excerpt of Autumn Leave, Time Blackwell, Swarm Music CD, 2002.



Musical MAS – BeatBender
• The system models a drum circle with agents based on the 

subsumption architecture with four types of behavioral 
rules: 
– Neighborhood rules react to the status of the neighbors agents
– Directed rules react to the status of specific agents
– Collective rules react to the global activity of all the active agents
– Temporal rules that use the history of the agent state

• Experiments show that complex rhythmic structures can be generated 
this way.



Musial agents – Porto Actors with Eargram

Porto actors with Eargram, Peter Beyls, Gilberto Bernardes, and Marcelo Caetano, 2015.



Layered Hybrid Architectures



Generic Musical Agent Architecture

Perception module

Learning and generation 
module

Interpretation module

Input (audio or symbolic)

Outup (audio or symbolic)



The Odessa musical agent, Adam Linson, Chris 
Dobbyn, George Lewis, and Robin Laney, 2012.

Musical agent – Odessa 



Musical agent – Odessa 

• Here is an excerpt of the system in an 
improvisation with Adam Linson playing the 
double bass.



Musical agent – OMAX 

Excerpt of a recording a variant of the system using the Variable 
Order Audio Oracle algorithm by Cheng-I Wang and Shlomo
Dubnov, 2013. 



11
8

MASOM - Live performance

Tatar, K. & Pasquier, P. (2017). MASOM: A Musical Agent Architecture based on Self-Organizing Maps, Affective Computing, and Variable Markov Models. 
In Proceedings of the 5th International Workshop on Musical Metacreation (MuMe 2017)

(Begleiter et al. 
2004)



119



120

iOTA
(collaboration with OUCHHH 
and Audiofil)
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Conclusion on Agents and MAS

• Cognitive approaches propose a top-down solution to:
– Agent design: the agent architecture, and its decision process.
– Society design: The organization of the MAS uses roles, conventions 

and protocols. Group goals, are broken down into individual goals, 
themselves broken down in sub-goals, reified as intentions, achieved 
through planning sequences of actions.

• Reactive AI proposes a bottom-up emergent solution to: 
– Agent design: the agent behavior emerges from the interaction 

between its behavioral rules
– Society design: the MAS behavior emerges from interaction the agents 

with their environment. 
• Hybrid architecture marry both approaches 



Pro and Cons

• Pro:
– A natural framework
– Online, interactive, …
– Possibly distributed: group creativity, hybrid 

systems,…
• Con:
– ???
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• Genetic algorithms
• Genetic Programming
• Types of fitness functions:

– Interactive fitness, in which humans are judges
– Automatic fitness functions: 

1. Data-driven fitness based on target, targets or target’s properties,
2. Data-driven fitness based on machine learning of human preferences or 

physiological data,
3. Analytical and theoretical formulations of fitness functions.

Evolutionary Computing



• In order to improvise Jazz solos, GenJam is co-evolving t
wo populations of melodic ideas: 
– A  measure population of 64 individuals: chromoso

mes are made of 8 genes that each map to an 8th no
tes. Each gene in a measure is encoded by four bits, 
with value 0 for rest, 15 being a hold, and 1-14 bein
g the notes events that are mapped to an actual MI
DI note through a set of scales that corresponds to t
he chord being played during that measure. 

– A phrase population with 48 individuals: A phrase is 
made of 4 measures each encoded by 6 bits.

• Musically meaningful operators:
– The measure mutations operate at the note level 

and include transposition, rotation, sorting, 
inversion, retrograde, … 

– The phrase mutations operate at the measure-
pointer level and include reverse, rotation, 
sequencing, …

GenJam

GenJam, Al Biles, 1993. 





DarwinTunes, Bob MacCallum and Armand Leroi, 2011.



• Data-driven or examples-driven fitness function can 
be derived from existing pieces:
1. Define a number of dimensions normalized in [0;1]: pitch variety, disso

nance, contour direction, contour stability, rhythmic variety, rhythmic r
ange, …

2. Select a corpus of existing pieces, and calculate statistics (typically aver
age and standard deviation) for the selected features and use these va
lues as a multidimensional fitness goals. 

3. Use a distance of similarity measure as a fitness function.

Data-driven fitness function 



The StyleMachine Lite, by Metacreative Technologies, does corpus-based style 
imitation of Electronic Dance Music (EDM) since 2014. 
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Style Machine
•Generative EDM
•How? 

• Manual analysis of corpus by 
experts (composers, producers)

• Our machine learning algorithm
Genetic algorithm / VOMM

•Validation: ongoing!
• Confuses classifiers: pieces gets 
classified properly!

• Confuses listeners
• Public shows since 2013:Algorave, …
• Album on ChordPunch (UK)
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With Arne Eigenfeldt, Christopher Anderson
Sound and Music Computing 2011

Computation Creativity, 2013
GECCO, 2013



variation on crossover where the amount of genes that are 
inherited from each parent can be controlled. What I call 
morphing is a linear interpolation on the gene level. 

Every operator creates a set of new genomes that can be 
auditioned and further bred upon in the interactive process. 
Any sound can be stored at any stage in a gene bank, and 
the stored genomes can be brought back into the breeding 
process anytime, or saved to disk for later use. The parents 
used in an operation can be selected from several sources: a 
previously stored genome, either of the most recently used 
parents, any uploadable sound in the current sound engine 
or an individual from the current population (i.e., the 
outcome of the last breeding operation). 

A genome is really just a string of numbers, of constant 
length. Another sound engine would interpret these numbers 
differently. This means that a genome is meaningless 
without the sound engine it was created for, and it will not 
work with any other engine. 

It is sometimes useful to be able to prevent a number of 
genes from being affected by the genetic operations. For 
instance, when certain parameters of a sound (e.g., the filter 
settings) is good enough and the user does not want to run 
the risk of messing them up in further breeding operations, 
she can disable them, and they will stay as they are. If a 
gene is disabled, it will be copied straight from the first 
parent. 

Mutation. A new genome is generated from one parent 
sound's genome by randomly altering some genes. A 
mutation probability setting controls the probability of a 
gene to be altered and a mutation range sets the maximum 
for the random change of a gene. Together, these two allow 
control of the degree of change, from small mutations on 
every parameter to few but big mutations. 

Mating (Crossover). Segments of the two parent genomes 
are combined to form a new genome. The offspring’s genes 
are copied, one gene at the time, from one of the parent 
genomes. A crossover probability setting controls the 
probability at each step to switch source parent. The starting 
parent for the copying process is selected randomly. Each 
parent will provide half of the offspring’s genes, on average. 
The genes keep their position within the genome during this 
copying. 

Insemination (Asymmetrical Crossover). For a new 
offspring genome (Q), the following process is applied, 
based on two parent genomes (P1 and P2): P1 is duplicated to 
Q, then a number of genes are overwritten with the 
corresponding genes in P2. An insemination amount controls 
how much of P2 should be inseminated in P1, and the 
insemination spread setting controls how much the genes to 
be inseminated should be spread in the genome - should 
they be scattered randomly or appear in one continuous 
sequence. If the insemination amount is small, the resulting 
sounds will be close in character to the sound of P1, with 
some properties inherited from P2. 

Morphing. A linear interpolation is performed on every 
gene of the two parent genomes, forming a new genome on 
a random position on the straight line in parameter space 
between the first parent (P1) and the second parent (P2). 

Manual Mutation. Manual mutation is not a genetical 
operator, but still something that affects the current genome. 
When the user changes a parameter on the synthesizer, the 
program is informed about the change and applies the 
change to the corresponding gene in the currently selected 
genome. The manual change then lives on through further 
breeding. Optionally, the manually changed gene can be 
automatically frozen, since a manual change is a strong 
decision. Manual mutations allow for the same level of 
direct control that the advanced synthesizer programmer is 
used to, and makes the method useful to both beginners and 
experienced users. Manual mutation may not be possible 
with all sound engines, depending on if they transmit 
parameter changes via MIDI.  

2.2 User Interface 
MutaSynth is made to be simple. It is also designed to 

give quick responses to user actions, to minimize all 
obstacles in the creative process. Currently, the user 
interface looks like this: 
 

Fig. 1: The current user interface of MutaSynth. 
 
The display shows a number of boxes representing the 

population, the last used parents and the currently selected 
genome in the gene bank. The layout is chosen to 
correspond to the nine number keys on the computer 
keyboard. To listen to any individual from the current 
population, the user presses the corresponding number key, 
and the parameter interpretation of the genome is sent to the 
sound engine. The keys +, -, * and / invoke the different 
breeding operators. With these keyboard shortcuts the 

MutaSynth , Palle Dahlstedt, 2001. 
Uses IGA to evolve presets.

Preset Generation



MutaSynth , Palle Dahlstedt, 2001. 



PresetGen
• Automatic preset generation
• Challenge: finding the set of 

parameters that gets us as close 
as possible to a target sound

• Our approach:
– Algorithm: NSGA-II
– Fitness: FFT, SFFT, temporal envelope

• Evaluation:
– Reverse engineering
– Other sounds
– Example: piano (c5)
– Ongoing empirical study

• Ongoing / Future Works:
– Online deployment for TE
– Synthesizer generation (Pure Data) 

With Matthieu Macret and Tamara Smith
Sound and Music Computing, 2012

Nominated for Best Paper Award
Sound and Music Computing, 2013



Musical Metacreation

• Problem: 
Sound synthesizer generation 

• Our approach:
– Mixed-type Cartesian programming 

to evolve Pure Data patches
– Fitness function based on 

perceptual sound similarity

• Results:
– Promising?
– After 7 years of work!
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With Noemie , Denis Lebel, Laurent Droget, Matthieu Macret, Kivanc Tatar
GECCO 2014



Evolution of Pure Data sound synthesis 
patches using Mixed-type Cartesian 
Genetic Programming, Matthieu Macret, 
Kivanc Tatar and Philippe Pasquier, 2015.
The system addresses the general sound 
synthesis problem.
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Spectra comparisons between approximated and target sounds.

Play each column in turn. 
For each column play 
top and then bottom
Print “Target” when you play top, 
and “Approximation” when you play bottom.

Reverse Engineering Sine Waves



Play each column in turn (starting at 42:27). 
For each column play 
top and then bottom
Print “Target” when you play top, 
and “Approximation” when you play bottom.

Generating synthesizers for real-world sounds.

Spectra comparisons between target and generated sounds.



• Challenges with IGA include:
– Difficult to control: 

• Mating operations often result in offspring which resemble just one (or often 
neither) of the parents.

• The user cannot specify which changes are desired.
– Low population size: interactive systems require design spaces with 

higher average fitness.
– Time required: the time needed to review individuals is the bottleneck 

of the system leading to user fatigue.
• Pros:

– Parallel search: IGA allows to navigate the search space explicitly and 
“zoom in” or “zoom out” on a particular design and its neighborhood.

– Genetic engineering interfaces allow for manual refinement of the 
genome of an individual. However, genes often interacts with each 
other when the phenotype is expressed (i.e., epistasis).

– Crowdsourcing allow for collective creativity and cumulative progress.

Pros and cons of IGA



Evolutionary ecosystem

• Mixing agents, ecosystems, and evolutionary 
computing
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Listening Sky, Alan Dorin, 2001.



Living melodies, Palle Dahsteldt and Mats G. Nordhal, 2001.



Genesynth, Anees Vartakavi, 2013.



Purely sonic ecosystems

Sonomorphs: An application of genetic 
algorithms to the growth and development of 
musical organisms, Gary L. Nelson, 1993.



Amar, Arne Eigenfeldt, 2009.



ElektroPlancton, Indieszero, Nintendo DS, 2005.



Evolutionary Ecosystems
• Evolution needs to be steered:

1. Put the human in the loop with IGA
2. Use a computational analytic evaluation: an analytic fitness function, 

or a data-driven one
3. Use the ecosystemic approach using an indirect fitness function 

emerging from the system’s dynamic.

• Characteristics of evolutionary ecosystems: 
– More complex strategies for the genome expression through the agent’s 

lifetime behavior. 
– Harness co-evolution and has emergent dynamic fitness function
– The termination criteria is unclear.
– Hard to control and experimental.
– Often evolve their own aesthetics that are likely irrelevant to human.



“Generative art practice focuses on the production and 
composition of the genotype and the media in which it produces 
the phenotype. When run, interpreted, or performed, the 
genotype produces the phenotype – the work to be experienced 
and the realization of the process encoded by the genotype.”

John McCormack and Alan Dorin, 2001. 
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Neural Networks



Artificial Neural Networks (ANN)

• A family of connectionist approaches:
– SOM (Self Organised Map)
– Perceptron
– MLP
– Recurrent Neural Networks
– Hopfield Networks
– ART (Adaptive Resonance Theory)
– LTST memory
– Boltzmann machines
– Deep learning
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Unsupervised learning
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Supervisor

Learner

Desired output

Output

Error

In
pu
ts

Learner Output

In
pu
ts

Unsupervised learning:

Supervised learning:



A SOM running the learning algorithms 
on the color domain.



SOM in musical metacreation

• Examples of SOM used for musical agents include:
– Joao Martins and Eduardo Miranda (2006) present a musical 

agent for rhythm generation using a variation of SOM called 
SARDNET (Self-organized activation Retention Decay Networks).

– Benjamin Smith and Scott Deal (2014) present a musical agent 
architecture that utilizes a SOM as part of the agent short term 
memory.

• Other musical use include: 
– Phon-Amnuaisuk (2007) has used SOM to extract musical 

structures and use it as a critic or fitness function for an 
evolutionary system.

– In order to capture the hierarchical dimension of music, the 
work has been extended using Hierarchical SOM or HSOM.



• The sonic SOM is a project by Arne Eigenfeldt and 
Philippe Pasquier, 2009.

• It is a computer-assisted creativity system helping 
musicians and sound designer navigating and selecting 
audio samples. 

SOM for sound organization

Repository of sound 
samples

Audio feature 
extraction

The color of the neuron represents the spectral dominant of 
the sound (red is mapped to low frequencies, green to mid 
frequency and blue to high).



Output weights of a hidden unit

Input weights of a hidden unit

ALVINN (Autonomous Land Vehicle In a Neural Network), Dean A. Pomerleau, Todd 
Jochem, 1989.



Dealing with time series with ANN
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• Music is sequential so we need to encode time with MLP.
• The first solution is to use a sliding window: we assume discrete time and 

all the data are shifted right at each new instant.



Recurrent Neural Network
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Feedback 
connection

• Memory can be captured by recurrent connexions also called 
feedback connection through which the state or 
emission of a neuron is being kept by being transmitted as 
input somewhere else. 



Recurrent Neural Network
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• Recurrent connexions allow to represent and learn 
a wild range of sequential behaviour. 

• RNN have the most general representational power.

A recurrent collection and a tap delay line allows this network 
to represent and learn a sequential behaviour. 



Peter Todd at al., early use of RNN for music, 1989.
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– HARMONET by Wolfram Menzel et al., 1992 
– Creative task: to harmonize melodies in the style of J.S. Bach. 
– It is a multilayer perceptron with simple recurrent links such that it has for input: 

• The harmonic context made of its previous outputs Ht-1, Ht-2, Ht-3

• The melodic context (both past and future): st-1, st, st+1

• Phr1 indicates the position in the musical phrase and the str1 indicates whether the current 
harmony is a stressed quarter.

– All together, the network has 106 input nodes, 70 nodes in the hidden layer and 20 
output nodes.

– Trained on 40 Bach chorales, using back propagation for learning algorithm. 
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Example: HARMONET

HARMONET architecture, Wolfram Mendel et al., 1992. 



Evolution of AI and machine learning systems.



Representation learning
Unsupervised greedy layer-wise training

Input nodes

Layer 1

Layer 2

Layer 4

Layer 5

w1

w2

w3

w4

Input nodes

Layer 1

Layer 2

Layer 4

Layer 5

w1

w2

w3

w4

Input nodes

Layer 1

Layer 2

Layer 4

Layer 5

w1

w2

w3

w4

Input nodes

Layer 1

Layer 2

Layer 4

Layer 5

w1

w2

w3

w4

First hidden layer 
pre-training

Second hidden layer 
pre-training

Third hidden layer 
pre-training

Fine tuning of 
whole network

Pre-learning: train the network with a lot of unlabeled data 
(unsupervised learning)

Supervised learning on a small(er) set of labeled data.

Semi-supervised learning.



• ALICE (A LSTM-Inspired Composition 
Experiment), Andreas Brandmaier, 2008.



Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal 
Vincent are modeling temporal dependencies in high-
dimensional musical polyphonic sequences with RTRBM and 
RNN-RBM, 2012.



DeepBach (2017)
Allows for incremental
and interactivity generation.
Any of the four voices can be
given/modified.
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DanceNet, Omid Alemi, Jules Francoise, Philippe Pasquier, 2016.
Deep learning of the relations between music audio features and 
dance movements.
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Dance generation in MAVI, Sunny Yang, Philippe Pasquier, 2016.



ANN in sound synthesis

NEURAL SYNTHESIS (Nos. 6-9), David Tudor in collaboration with engineers Forrest 
Warthman, Mark Holler, and Scot Gresham-Lancaster. It features an analog neural 
network synthesizer used to generate complex oscillations, 1992-94.



Oliver Bown musical agent uses a CTRNN (continuous time 
recurrent neural network) driving a sound synthesis system, 
2009.



Oliver Bown musical agent improvising with Flute 
player Finn Peters. Recorded live at  Café Oto in 
London, 2009. 



Deep Learning

• WaveNet generate sounds signal (sample by sample)
• Developped for text to speech, it can generate music.
• Using Dilated Convolutional Network
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There is plenty!

• Other ”deep Learning approaches to audio 
music generation: 
– SampleRNN (Mehri et al. 2017), 
– DeepVoice (Arik et al. 2017), 
– TacoTron 2 (Shen et al. 2017), 
– WaveRNN (Kalchbrenner et al. 2018)
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Improved SampleRNN (MuMe 2018)
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Neural networks as fitness function

– Researchers used ANN as fitness functions 
in musical systems:
• Pazos et al. (1999) used this approach for 

their GA-based rhythmic generation system.
• A.R. Burton and T. Vladimirova (1997) used 

ART (Adaptive Resonance Theory) for fitness 
evaluation of generated rhythms.
• Marcus Pearce (2000) used a MLP for 

evaluating the fitness of drum and bass 
rhythms generated using GA. 
• Al Biles et al. (1999) used ANN for fitness 

ratings in GenJam.



Pro and Cons of ANN for generative art.

• Disadvantages and limitations:
– Learning is slow, and computationally demanding.
– The right type and quantity of data needs to be available.
– ANN are difficult to design, and have very many 

parameters.
– ANN are black boxes: opaque learning

• Advantages:
– ANN are fast for generation.
– They are very flexible to capture multi-dimensional 

domains with a variety of inputs.
– They can generalize beyond the corpus.

177



The Evaluation Problem

How good is this system?
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Evaluation of metacreation
• Metacreations can be evaluated by:

1. Their authors: artists, designers, 
computer scientists,…

2. Users, peers and experts: composers, 
musicians, sound designers,…

3. The audience: popularity, concert 
and album sales,…

4. Media: critics, journalists,…  
5. Peer reviewers, curators and jury: 

papers, concerts, festivals, grants, …
6. Theoretical and analytic measures: 

of the process, of the input/output 
relationship, … 

7. Empirical studies: qualitative or 
quantitative user/audience study, …

Informal
Art

Real world

Formal
Scientific

Academic 
world



• Evaluating creative systems is a difficult task:
• Theoretical reasons:

• No notion of optimality
• Subjective/cultural impressions/judgments are involved 
• It is multidimensional and framing can play a role: humans seem 

biased against computational creativity (Moffat and Kelly, Comp. 
Crea., 2006)

• Practical reasons:
• Choice of the corpus
• Choice of the parameters (user study)
• The system needs to be evaluated on a sample output: generative 

systems can create ad infinitum 
• The various uses of the system needs to be taken into account
• Composition and interpretation are dependent

Evaluation of Musical Metacreation
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Evaluation of Musical Metacreation
• This study is part of a series of 8 studies exploring a range 

of qualitative and/or quantitative methods (on various 
systems). 

• The goal is to explore existing and craft new research 
instruments (because we need them)

• Methods often include indirectness:
• Instead of: �Is the system creative?�
• Researchers look at comparative studies: 

• �Are the system�s productions comparable to human productions (from 
the corpus or not)?�

• �Can the audience identify which outputs are system generated?�
• Using deception: 

• How engaging was the piece?
• How boring-enjoyable, simple-complex, organic-mechanical, … 
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Methodology
• Our methodology builds on previous work on Turing test-like 

proposals. 
• For 20 excerpts, we ask the user to determine the likely 

provenance of the source (no deception) using a 4-point 
scale: 

1. “definitely human”,
2. “probably human”, 
3. “probably computer” 
4. “definitely computer”.

• This way: 
– We get both guess and confidence.
– We do not provide an “I don’t know” option to keep the 

participants engaged (perceptual studies show that participants 
tend to underestimate their capabilities).
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Corpus
• Twenty 8 bars excerpts: 2 human-composed progressions and 2 system-

generated ones from each of the following 5 classical and romantic 
music corpuses:
– Frédéric Chopin: Nocturne in Eb Major Op. 9 No. 2, Nocturne in F# Major Op. 15 No. 

2, Nocturne in G minor Op. 15 No. 3, Nocturne in Db Major Op. 27 No. 2; Nocturne in F 
major Op. 55 No. 1.

– Antonín Dvořák: Humoresque, Legend; Slavonic Dance No. 1; Slavonic Dance No. 2, 

Symphony No. 9 “From The New World” Second Movement, Valse Gracieuse.
– Johannes Brahms: Symphony No. 1 In C Minor 3rd Movement, Symphony No. 2 In D 

3rd Movement, Symphony No. 3 in F 2nd Movement, Symphony No. 3 in F 3rd

Movement, Symphony No. 4 In E minor 3rd Movement, Hungarian Dance No. 5.

– Felix Mendelssohn: Consolation, If With All Your Hearts, Spinning Song, O Rest In The 
Lord, Scherzo in E Minor, Venetian Boating Song (from Songs Without Words).

– Robert Schumann: About Strange Lands And People, Träumerei, (from Scenes from 
Childhood), The Happy Farmer (from Album for the Young), Piano Concerto in A Minor, 
The Wild Horseman, Arabesque.
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Participants
• Two independent groups: formal training in 

classical music analysis (the “target language”) 
versus no/informal musical training

• Total participant count: 87
– 2+ years of bachelor’s 

degree in music: 9
– Royal Conservatory 

(≥ 5th grade): 11
– Some experience: 37
– No experience: 30
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“Musicians”

“Non musicians”



Results: Discrimination choice

• Statistical analysis of the results shows that:
– Participants were not able to identify computer-

composed pieces above chance level, thus 
“validating” our system

– Expertise does not make a difference: no significant 
difference between groups could be observed.

– Human competitive system: but only for a short 
sequence (4-32 bars)
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Evaluation of the Creative Output

• Generative art and computational creativity consists in encoding, at least 
partially, a creative practice into a process. 

• This creative process can be: 
a. Modeled after of an existing practice, addressing an existing creative task and can be 

compared with humans products at the same task.  
b. A deliberately new process the outcome of which can not be produced by a human 

without modern computers. 

• Comparative evaluation methods do not really evaluate the creative 
process, just the creative outcome. 
– Weak computational creativity: only the system’s product is deemed creative, sometime 

called “mere generation”
– Strong computational creativity: the process itself is deemed creative.

• Framing, intentions, explanations and justifications are important and 
influence perception. This has been lacking in MuMe (while it does exist in
other domains: e.g., The Painting Fool, Angelina).
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• The bias against computational creativity is the 
hypothesis that computationally-generated 
artifacts are often judged to be less interesting, 
valuable, and less creative than human generated 
ones. 

• Anecdotal evidence include David Cope’s 
Experience in Musical Intelligence  (EMI, 1981), 
an early style imitation system that was received 
with controversy.
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The Bias Against Metacreation



"Most musicians, academic or composers, have always held this idea that 
the creation of music is innately human, and somehow this computer 
program was a threat in some way to that unique human aspect of 
creation,” 

"I have always refuted that by saying that a human built the machine, 
listens to the output, and chooses what's the best. What's less human 
about that than if I had taken years and years to just compose the whole 
thing myself?”

David Cope, 1986.
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• Empirical study of the bias against 
computational creativity: David Moffat and 
Martin Kelly (2006)

• Empirical Study of the Bias Against 
Computational creativity: Pasquier, P. Burnett, 
A., Thomas, N. G., Maxwell, J. B., Eigenfeldt, A., 
Loughin,, T. (2016)

• Empirical Study of the Bias Against 
Computational Creativity: Norton, D., Heath, D., 
Ventura, D (2015)
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MuMe Future
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2009 “Human musicians routinely jam with cybernetic 
musicians.” 

2019 “Virtual artists in all of the arts are emerging and 
are taken seriously.”

2029 “Many of the leading artists are machines.”

2099 “The reverse engineering of the human brain 
appears to be complete.”
Ray Kurzweil, The Age of Spiritual Machines (1999).



“The algorithmic revolution lies behind us and nobody 
noticed it. That has made it all the more effective—there is 
no longer any area of social life that has not been touched by 
algorithms. Over the past 50 years, algorithmic decision-
making processes have come very much to the fore as a 
result of the universal use of computers in all fields of cultural 
literacy—from architecture to music, from literature to the 
fine arts and from transport to management. The algorithmic 
revolution continues the sequencing technology that began 
with the development of the alphabet and has reached its 
temporary conclusion with the human genome project. No 
matter how imperceptible they may be, the changes this 
revolution has wrought are immense.”

Roman Verostko, 2004.
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Industry interest

• The industry is getting interested:
– (New) Spotify Creator Lab (computer assisted 

composition)
– JukeDeck (composition for video)
– Metacreative Inc.(computer assisted composition)
– Melodrive (adaptive generative music for games)
– Google Magenta (?)
– Many more…
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The audience is on it

• CDs, vinyl, k7, and concert tickets are selling.
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Hello Shadow, Stromae & SKYGGE feat. Kiesza, composed with Flow 
Machine (Francois Pachet), 2018.
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Poster of the musical “Beyond 
the fence”, 2016.



Live Coding

• Programming consists in instructing computers to do what we 
known to ask them. 

• Live coding explores the idea of using code itself as a live generative  
instrument.

• Some computer music or creative codding platforms can be used 
for live coding: E.g.,  Supercolider, Chuck, Vvvv, Pure Data and Max.

• Specialized languages emerged for the purpose of live coding: 
Impromptu, Extempore, TidalCycles, Gibr, …

• In effect, Live coding is the coding of a generative system in real 
time:
– The code can be deterministic or not.

– Pre-programmed generative operations or algorithms can be used.



Meta-eX, Sam Aaron and Jonathan Graham, live coding duo, 2012-2014.



The Algorave movement



Live coding for visuals is possible with LiveCodeLab, Fluxus, 
Cyril, MAX or Pure Data.



Luddites were English rioters in favor of 
destructing machinery.

The Fear of Technologic Unemployment



Advertisement from the American Federation of 
Musicians, Syracuse Herald, September 2, 1930. 

The Fear of Technologic Unemployment



“The time is coming fast when the only 
living thing around a motion picture house 
will be the person who sells you your ticket. 
Everything else will be mechanical. Canned 
drama, canned music, canned vaudeville. 
We think the public will tire of mechanical 
music and will want the real thing. We are 
not against scientific development of any 
kind, but it must not come at the expense of 
art. We are not opposing industrial 
progress. We are not even opposing 
mechanical music except where it is used as 
a profiteering instrument for artistic 
debasement.”

President of the American Federation of 
Musician, 1930.

Fear of Technologic Unemployment

A robot grinding up musical instruments, Syracuse 
Herald, November 3, 1930.



The Debate between Technophobia and Technophilia
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• Technoscience refers to any concrete or abstract technology 
capitalizing on scientific methods and methodologies.

TechnophiliaTechnophobia
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Community and Resources

• Online:
– MuMe site: http://musicalmetacreation.org/
– MuMe group: musicalmetacreation@googlegroups.com

• Academic venues:
– International Workshop on Musical Metacreation
– International Conference on Computational Creativity
– International workshop on machine learning and music
– International conference on generative art
– EvoMusArt
– ISMIR, ICMC, SMC, Audio Mostly
– IJCAI, AAAI, ICML, GECCO
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Written resources

• Numerous texts: 
– Book Neuhaus
– Double issue ACM computer in Tentetainmet

(including our introduction)
– J.-P. Briot, G. Hadjeres and F. Pachet, Deep 

Learning Techniques for Music Generation – A 
Survey, arXiv, September 2017. (Springer book in 
prep)

– MuMe proceedings (110 papers on generative 
music) and all other proceedings (1k+ papers).
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www.Kadenze.com

• A new MOOC for 
art education

• Focusing on the 
theory and practice of: 
– New Media 
– Digital  Art
– Creative computing
– Computer Music
– Interactive Art
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Conclusion
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Lessons and Challenges

• Symbolic generation is better than audio 
generation (=interpretation is hard).

• Controllable factors need to be further
explored (affective computing)

• Moving beyond style immitation
• Like everywhere, ANN are making a foray.
• More needs to be done (cognitive modelling,

agent learning).
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Computational Creativity
• Computational creativity is exploring the automation of 

creative tasks (as opposed to strict rational problem 
solving).

• Key research areas/questions are:

– Computational models of human creativity: What is 

creativity? Can we model it?

– Artificially creative systems (metacreations):  How to 

automate creative tasks? How do we evaluate creative 

machines? Can we go beyond human capabilities?

– Applications as Art/Design practices: generative art, 

generative music, generative design, procedural content 

generation in games, …

– Applications in computer-assisted creativity: computational 

systems for supporting human creativity (IHCI needed!)
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• There are many reasons why the automation of 
creative tasks is a relevant research topic. 

• 1. Scientific / academic: 
– Research in CC is fundamental research on 

creative processes.
– It contributes to cognitive sciences, and to IHCI in 

the context of computer-assisted creativity, 
computer assisted design.
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2. Pragmatic and economical reasons 
– Rational problem solving is not the main use of 

computers (anymore), creative and entertainment 
computing is.

– There is a demand from the market as we move from 
linear to non-linear media.

• This entails an explosion of the number of assets  
needed:

• Take gaming as an example:  World of Warcraft currently has 12 
millions players, playing 20 hours per week on average!

• Music for game: copyright free, adaptive, personalized,…
• Visuals, animations, story lines, levels,  …
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3. Efficiency and HCI software design: Creative software are 
mostly inert. 
• No, or not enough, intelligence and automation in creative 

software. There is a need in the creative industry
• More generally in HCI, we are still pressing keys, and 

buttons, selecting functions in menus, …, in a very 
repetitive way. We would like more fluid, high-level 
interactions with the machine. 

• This requires more machine autonomy, and generative 
system to completely or partially automate creative 
processes.
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4. Societal: 
– As the industrial revolution of the 19th and early 20th century was about 

automation of the mechanical labor, the digital/information revolution is 
about the automation of the treatment of information.

– Before the computer, only human brains could do the algebraic operations 
allowed by Excel or any basic computer program... 

– Many tasks are and have been automatized. 
– There is no reason why creative tasks would stay out of the reach of this 

revolution. 
– There is no reason why art would stay out of this revolution and the 

accompanying dialogues. 
– Some are afraid or less enthusiastic about the idea of artificial creativity, but 

the idea is not to replace artist. 
– Artists and creative industries have always used the tools of their time to 

disseminate new forms, and the accompanying reflexions. 
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5. The final set of reasons are Cultural / artistic: 
– Generative art is an ancestral cultural practice in which artists are 

transferring (some of) their (creative) autonomy to a process (often a 
machine)

– This is a process by which artists can free themselves from their own 
limitations, and go further in the conceptualization of their pieces (at 
the cost of a work of formalization through the writing of procedures 
and algorithms and their implementation).

– Now a days generative art is at the forefront of digital art, using 
computers (the most common media of our time) for art making and 
culture-making. 

– This is one of the ways by which artists can engage into the dialogue
around new technologies and the computerization of society.
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Conclusion

• From the invention of the wheel to the development of 
the most advanced artificial intelligence, machine 
learning and artificial life, technology has continually 
shaped us.

• Away from the fears of AI taking over, I believe in the 
humanist tradition of anthropomorphic 
instrumentalism: we design and make the machines we 
need that we think will serve us. 

• The computerization of society and the rise of 
autonomous machines has deep implications, and the 
future is generative but can we harness the power of 
machines to expand our creativity?
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Metacreation Lab
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?

• MUTEK 2018, August 22, Montreal (CA)
• MUME 2019, June 2019, Charlotte (USA)

– 6th International Workshop on Musical Metacreation 
– in conjunction with the International Conference on Computational 

Creativity (ICCC)
• MOCO 2019, October 2019, ASU (USA)

– 4th International ACM Conference on Movement Computation
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