
What do these 5,599,881 parameters mean? An analysis of a specific LSTM music
transcription model, starting with the 70,281 parameters of its softmax layer

Bob L. Sturm
Centre for Digital Music, Queen Mary University of London UK

Abstract

A folk-rnn model is a long short-term memory network
(LSTM) that generates music transcriptions. We have
evaluated these models in a variety of ways – from
statistical analyses of generated transcriptions, to their
use in music practice – but have yet to understand how
their behaviours precipitate from their parameters. This
knowledge is essential for improving such models, cali-
brating them, and broadening their applicability. In this
paper, we analyse the parameters of the softmax output
layer of a specific model realisation. We discover some
key aspects of the model’s local and global behaviours,
for instance, that its ability to construct a melody is
highly reliant on a few symbols. We also derive a way to
adjust the output of the last hidden layer of the model to
attenuate its probability of producing specific outputs.

Introduction
The folk-rnn software1 builds a long short-term memory
(LSTM) network (Hochreiter and Schmidhuber 1997) that
models music transcription sequences expressed in a vocab-
ulary derived from “ABC notation” (Sturm et al. 2016).2
This notation finds much use in the on-line sharing of folk
tunes, e.g., the website http://thesession.org. We
have trained several folk-rnn models on a dataset extracted
from that website, and have evaluated them in a variety of
ways (Sturm and Ben-Tal 2017). However, what we have
yet to understand is how the behaviours of a folk-rnn model
precipitate from its parameters.

Consider the following transcription generated by the
folk-rnn model “v2” (Sturm et al. 2016), notated in Fig. 1:
<s> M:6/8 K:Cmaj |: C D E G, 2 A, | C D E A,
2 G, | C D E G, 2 G, | C 3 A, 3 | C D E G, 2
A, | C D E G 3 | A A G A 2 B | c 3 C 3 :|
|: C D E G 2 A | G 3 E 2 D | C D E C 2 D |
E C A, G, 2 G, | C D E G 2 A | G 3 A 3 |
G C 2 D E D | C 3 C 3 :| </s>

In this transcription, each space separates a token produced
by the model. The first and last tokens mark the beginning

This work is licensed under the Creative Commons “Attribution
4.0 International” licence.

1Available here: https://github.com/IraKorshunova/folk-rnn
2http://abcnotation.com/
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Figure 1: A transcription generated by folk-rnn model v2.
How do the 5,599,881 numerical parameters of v2 relate to
the local and global characteristics of this transcription?
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Figure 2: Transcription “Páidı́n Ó Raifeartaigh” from the
training data of folk-rnn model v2. (This also appears in the
training data as “The Quaker’s Wife”. The counting mistake
in last bar of the A part is in the original.) Compare with the
transcription generated by v2 in Fig. 1.

and end of a transcription. The second and third tokens de-
note meter and mode, respectively. These are followed by a
repeat token, and then pitch, duration, and measure tokens.

Many local and global characteristics of this transcription
are common in the training transcriptions. It has an AABB
form, with 8 correctly-counted measures in each part. Both
parts start and end on the tonic, have a cadence, and share a
strong resemblance by repetition and variation of a melodic
idea. The melody features step-wise motion, arpeggiation,
and rhythmic consistency. There is also an ambiguity be-
tween C major and its relative minor. Has v2 merely repro-
duced something from its training material? Figure 2 shows
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the closest transcription we find among the 23,636 transcrip-
tions in the training data. This is clearly a different tune. So
how do the local and global characteristics we see in Fig. 1
precipitate from the 5,599,881 parameters of v2?

The analysis of RNN sequence models, in terms of ex-
plaining the roles of their parameters (and hyperparameters)
for the sequences they are modelling, rarely appears in the
literature. Researchers often build models using a range of
hyperparameters (e.g., architecture and training decisions)
and compare them according to how well each fits validation
sequences. Many researchers have applied LSTM to music
sequences, e.g., Franklin (2006); Eck and Lapamle (2008);
Chung et al. (2014); Greff et al. (2016); Colombo, Seeholzer,
and Gerstner (2017), but they do not analyse the parame-
ters of the resulting models. This is in contrast to work in
computer vision that aims to understand content identifi-
cation systems in terms of the functions of their elements,
e.g., specific groups neurons that activate for dog faces
or flowers (Zeiler and Fergus 2013; Szegedy et al. 2014;
Yosinski et al. 2015).

One notable exception in research applying LSTM to
sequence modelling is that of Karpathy, Johnson, and Li
(2015). They inspect the internal dynamics of LSTM mod-
els of written text (the novel “War and Peace” and the Linux
kernel) and find some interpretable components, e.g., gates
that turn on and off with open and closed quotes or “if” state-
ments. They find that many of the components in the models
are not so clearly interpretable. They do not, however, anal-
yse the parameters themselves.

In this paper, we analyse the parameters of the softmax
layer of v2 using multivariate analysis. This helps us relate
its parameters to local and global characteristics of its out-
put.3 How is v2 generating music transcription sequences
that by and large appear correctly counted? Can we isolate
in its parameters its latent “notions” of time, repetition, vari-
ation, melodic contour, structure, and cadence? How can we
modify its parameters to encourage or discourage particular
behaviours without retraining, e.g., doubling the likelihood
of it producing specific output? Such knowledge is essential
to improve such models, calibrate them for particular users,
and broaden their applicability.

Overview of the folk-rnn model v2
Architecture and parameters
The folk-rnn model v2 consists of three LSTM layers
(Hochreiter and Schmidhuber 1997) of 512 units each, and
an output softmax layer (choices made for no particular rea-
son). Its input and output dimensions relate to an indexed vo-
cabulary (Sturm et al. 2016), V , which consists of |V| = 137
tokens of seven types: transcription (2); meter (7); mode (4);
measure (5); pitch (85); grouping (9); and duration (25). Ex-
amples of these tokens can be seen in the transcription of the
previous section.

v2 operates in the following way. Let s be a sequence of
elements of V , and let s(t) be the tth one. v2 transforms

330,000 transcriptions generated by v2 can be found
here: https://highnoongmt.wordpress.com/2018/01/05/volumes-1-
20-of-folk-rnn-v1-transcriptions/

s(t) through a sequence of non-linear operations: V →
{0, 1}137 → [−1, 1]512 → [−1, 1]512 → [−1, 1]512 → V .
After encoding s(t) as a binary (one-hot) vector, xt, the first
LSTM layer transforms it to a vector h

(1)
t ∈ [−1, 1]512.

The second LSTM layer maps h
(1)
t to a vector h

(2)
t ∈

[−1, 1]512. The third LSTM layer maps h
(2)
t to a vector

h
(3)
t ∈ [−1, 1]512. And the softmax layer “decodes” h

(3)
t

to produce a categorical probability distribution over V . The
model samples from that distribution to produce s(t+ 1).

Denote the input to the ith LSTM layer of v2 by y
(i)
t . This

layer transforms y(i)
t by (Graves 2013):

i
(i)
t ← g(W

(i)
xi y

(i)
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(i)
hi h
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(i)
i ) (1)

f
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(i)
xfy

(i)
t + W

(i)
hfh

(i)
t−1 + b

(i)
f ) (2)

o
(i)
t ← g(W(i)

xoy
(i)
t + W

(i)
hoh

(i)
t−1 + b(i)

o ) (3)

c
(i)
t ← tanh(W(i)

xcy
(i)
t + W

(i)
hch

(i)
t−1 + b(i)

c )� i
(i)
t

+ f
(i)
t � c

(i)
t−1 (4)

h
(i)
t ← tanh(c

(i)
t )� o

(i)
t . (5)

where g is the sigmoid function applied element-wise to its
argument, and � is an element-wise multiplication. i(i)t is
the output of the input gates; f (i)t is the output of the for-
get gates; o(i)

t is the output of the output gates; c(i)t is the
output of the cell gates; and h

(i)
t is the hidden state of the

layer. The size of each matrix and bias vector of a layer are
commensurate with the following connections between lay-
ers: y(1)

t ← xt ∈ {0, 1}137; y(2)
t ← h

(1)
t ∈ [−1, 1]512; and

y
(3)
t ← h

(2)
t ∈ [−1, 1]512.

v2 produces s(t + 1) by sampling from V according to a
categorical distribution with parameters

pt = softmax
(

1

Ts

[
Wsh

(3)
t + bs

])
(6)

where Ts ∈ R+ is a user-specified sampling temperature
setting. (In this work, Ts ← 1.) The dimensions of pt ∈
[0, 1]137 are ordered corresponding to V . For example the
87th dimension, [pt]87, corresponds to the token “K:Cmaj”,
which denotes the C major mode.

Training
In total, v2 has 5,599,881 numerical parameters: 8 matrices
and 6 vectors in each LSTM layer, and a matrix and vector
in the softmax layer. These parameters are found via train-
ing on a dataset, which aims to optimise a cost function that
describes how well the model fits the dataset. The cost func-
tion for v2 is the negative mean log probability, or sequence
loss:

L(s) := − 1

|s|

|s|∑
t=1

log[pt]s(t) (7)

for a transcription s. This shows that training v2 attempts to
maximise each “ground truth” dimension of pt computed by
the model over the sequence.
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Figure 4: Top: Parameters Ws (columns, grey) and bs (black) of the softmax layer (6). Middle: Three columns of Ws (num-
bered). Bottom: The five left singular vectors of Ws with the largest singular values. All plotted relative to the 137 transcription
tokens of V ordered by type: transcription (2); meter (7); mode (4); measure (5); pitch (85); grouping (9); and duration (25).
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Figure 3: The sequence loss of the folk-rnn model v2 decays
as its training proceeds. The black line is loss in the vali-
dation dataset. The grey line is loss in the training set. The
erratic behaviour of the training loss comes from the mini-
batch training procedure: the model parameters are tuned on
a new batch of 64 transcriptions every 351 iterations.

We train v2 using data from http://thesession.org. Af-
ter much cleaning, we transpose all transcriptions to have
a root of C. We then parse the transcriptions into tokens.
The dataset contains 23,636 transcriptions, with a total of
4,032,490 tokens. The shortest transcription sequence is 46

tokens (titled, “The Ballintore Fancy”); the longest is 1952
tokens (titled, “The Mason’s Apron”). The median transcrip-
tion length is 150 tokens. More information on the training
data is provided by Sturm and Ben-Tal (2017).

We train v2 using stochastic gradient descent with mini-
batches of 64 transcriptions selected randomly from 95%
of the training transcriptions. We validate the model every
1000 iterations on the remainder. One epoch is defined as
351 steps, after which point the model has seen all train-
ing transcriptions. We use dropout at a rate of 0.5 between
all layers. In adjusting the parameters, we use gradient clip-
ping (to 5), a learning rate of 0.003, and a decay of 0.97
after 20 epochs. We do not truncate the number of steps for
back-propagating the error. Figure 3 shows how the loss (7)
decays for both the training and validation sets. If the model
learns nothing, then pt is iid uniform in the best case. For
the v2 vocabulary this would be L(s) = 4.92. Hence, the
training procedure appears to be working. v2 is the model
after 100 training epochs, which we analyse below.

Analysis of the softmax layer
Since the rows of pt (6) relate directly to V , so do the rows
of Ws ∈ R|V|×512 and bs ∈ R|V|. The hidden state vector
of the third LSTM layer (L3), h(3)

t , is the input to the soft-
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max layer, and so we see that layer directly controls how the
columns of Ws combine to displace the bias bs.

Figure 4(top) shows the “shapes” of the parameters in Ws

and bs relative to V . This shows bs has small values for the
tokens: <s>, =f’, 16, (7, ˆf’, =C,. We find that
these tokens are rarely generated by v2, and in fact they are
themselves rare in the training data (with the exception of
<s>, which is the “start transcription” token used to initiate
generation).

Figure 4(middle) shows three columns of Ws. These are
controlled by L3 units 34, 203 and 497. We see that 497
pushes up probability mass for tokens =B,, C and c and
pushes down probability mass for tokens A, and ˆg (or
vice versa). This suggests that in some instances v2 is treat-
ing enharmonic pitch classes in similar ways. We also see
that L3 units 34 and 203 are controlling columns of Ws that
appear quite similar, save polarity. If these two units both
saturate in the positive direction, these two columns of Ws

will add to increase the probability mass of the four modes.
We find several such instances in Ws. This shows it is im-
portant to interpret the columns of Ws, and likewise the
units of L3, as groups contributing to the distribution over
V . This motivates applying singular value decomposition.

Singular value decomposition of Ws

The singular value decomposition (SVD) of Ws shows how
the hidden state of L3 affects the probability distribution at
the softmax layer (6). The SVD of Ws expresses it as a sum
of rank-1 orthogonal projection matrices:

Ws =

|V|∑
j=1

σjujv
T
j (8)

where {uj ∈ R|V|} are the “left singular vectors” (lsv),
{vj ∈ R512} are the “right singular vectors” (rsv), and {σj}
are the singular values ordered such that σ1 ≥ σ2 ≥ . . . ≥
σ|V| > 0. Since all singular vectors are orthonormal, then

Wsvj = σiuj . (9)

We see from this how h
(3)
t can point along vj to displace the

probability distribution along uj .
Figure 5 shows the singular values of Ws. We find the

largest singular value to be more than 7.5 times all the oth-
ers. Figure 4(bottom) shows the five lsv with the greatest
singular values. An lsv amplifies the probability of tokens
for which it is positive, and attenuates the probability of to-
kens for which it is negative (or vice versa since the range
of the hidden state of L3 is [−1, 1]). Here we see the first
lsv increases the probability mass of all tokens, with the
two largest changes being for the end transcription token
</s> and the end chord token ]. The second lsv ampli-
fies the probability of the four mode tokens, and attenuates
the probability of three octaves of pitch tokens. The third lsv
amplifies the probability of several measure tokens, as well
as particular duration tokens (e.g., 2, /2 and >), and attenu-
ates the probability of the same three octaves of pitch tokens
as the second left singular vector. The fourth lsv amplifies
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Figure 5: The singular values of Ws.

some of the low-pitched tokens. The fifth lsv greatly am-
plifies the measure tokens and attenuates specific duration
tokens.

Projections of layer 3 hidden state sequences
Returning to the transcription produced by v2 in Fig. 1, we
can now see how its L3 hidden state sequence {h(3)

t } points
along the orthogonal basis defined by the rsv of Ws. Figure
6(top) shows the hidden states of 200 L3 units over the gen-
erated tokens. We see a variety of behaviours of the units:
some saturate after each measure token is generated; some
activate just before a repeat measure token appears; many
have periodicities of about 6-7 steps, which is about the pe-
riod of the measure tokens; and a few units stay on for the
majority of the transcription. We also see that the hidden
states of L3 are sparse.

Figure 6(bottom) shows the magnitude projections of
{h(3)

t } onto the 30 rsv of Ws that have the greatest singular
values (σj > 15, Fig. 5). We see for this transcription that
every hidden state vector points in large part along the first
rsv. The second-step hidden state vector, h(3)

2 produces the
mode token K:Cmaj, and is the only one to point in large
part along rsv 9 and 11. We see the hidden state vector points
along rsv 5 and 15 in the steps where v2 produces a measure
token | or :| — which is no surprise given how much lsv 5
points along measure tokens in Fig. 4(bottom).

To explore the meaning of rsv 5 and 15 for measure to-
kens, we have v2 generate 10 different transcriptions (in-
cluding that in Fig. 1), and project all L3 hidden state vectors
onto these two rsv. Figure 7 shows in this subspace measure
tokens appear concentrated in a region separate from the oth-
ers. We now explore the significance of this subspace of the
column space of Ws.

Shrinking the column space of Ws

We find that Ws ∈ R137×512 is full rank, which means its
column space is R137. We can shrink the dimension of its
column space by truncating the sum in (8). If we run v2 with
the same random seed as for Fig. 1, but approximating Ws

using only the 30 pairs of singular vectors having the largest
singular values, it produces the transcription shown in Fig.
8. Compared with that in Fig. 1, we see the transcription
still has an AABB form, with 8 bars in each part correctly
counted. There is now a second ending for A. Both parts start
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Figure 6: Top: the sequence of layer three LSTM hidden state vectors {h(3)
t } for the transcription generation shown in Fig.

1 (only 200 of 512 units shown). Bottom: magnitude projections of {h(3)
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largest singular values. Generated transcription tokens shown along x-axis.

and end on the tonic with a cadence. We still see repetition
and variation, but it seems more varied in this transcription.
Unlike for the transcription in Fig. 1, there is not a strong
resemblance between the parts here. It seems then that many
of these behaviours of v2 are not affected by excising this
107-dimensional subspace from the column space of Ws.

If we instead reduce the dimension of the column space
of Ws by only one, setting Ws ←Ws−σ5u5v

T
5 , then the

modified model generates a transcription that we must end
manually after thousands of steps. Figure 9 shows the begin-
ning of this transcription. While we do see stepwise motion,
nothing is counted correctly, and the melody lacks direction.
Hence it seems this slight modification to the column space
of Ws has severely affected global behaviours of the model.

These interventions on Ws show that the L3 layer of v2
in the case of Fig. 1 is working by and large in a subspace
of R512 that has a dimension far less than 137. The model
seems to rely heavily on one specific direction, u5, for not
only generating measure tokens at the correct positions, but
building melodies, repetition and variation to create parts,
and ending a transcription. This suggests that the “counting”
ability of v2 is not so easily isolated from its other abilities,
i.e., it is not clear if we can preserve its “sense” of melody
while excising its ability to correctly output measure tokens.
The local behaviours of the model, e.g., stepwise motion,
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Figure 7: For 10 different transcriptions generated by folk-
rnn model v2, including that in Fig. 1, the projection of each
{h(3)

t } onto right singular vectors (rsv) 5 and 15 of Ws.
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Figure 8: Transcription generated by folk-rnn model v2 with
the same random seed as Fig. 1, but using a softmax matrix
approximated with the first 30 singular vectors of Ws (6).
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Figure 9: The beginning of the transcription generated by
folk-rnn model v2 with the same random seed as Fig. 1, but
with the softmax matrix Ws − σ5u5v

T
5 (6).

do not seem to be so severely affected by this “lobotomy”,
however.

Melodic “ability” of v2 relies on measure tokens
To test the hypothesis that v2 relies heavily on measure to-
kens for building melodies, we suppress its sampling of mea-
sure tokens at the softmax layer. Starting with the same ran-
dom initialisation as Fig. 1, we force v2 to sample repeatedly
until it produces a token in each step that is not |. Figure 10
shows the resulting transcription, and Fig. 11(top) shows the
probability of sampling | in each step. Compared with Fig.
1, we see the first measure is the same up to the A semi-
quaver. At this point, the model samples | but is forced to
sample again. It eventually produces the token /2, and then
produces another semiquaver note, and then tries again to
sample |. When forced to resample, it produces the first-
ending measure token |1. The system finishes the transcrip-
tion after 9 bars, with each correctly counted save the first.
There does appear to be some repetition and variation of the
rhythm of the first six notes, and the melody does feature
stepwise motion and some arpeggiation. The fourth bar fea-
tures a V-I cadence, with a leading tone pickup into the next
bar, but otherwise after the 4th bar the melody is wandering.
Figure 11(top) shows that the model never loses interest in
producing the measure line token throughout the generation.

1 1

8
6

2 1

1 2

Figure 10: The transcription generated by folk-rnn model v2
with the same random seed as Fig. 1, but suppressing its out-
put of measure token |. Figure 11(top) shows the probability
of |, and the tokens that were sampled instead.

Figure 11(bottom) and Fig. 12 show the results when we
suppress the sampling of any measure token. After the sup-
pression of the start repeat token |: the transcription differs
from Fig. 1 and 10. We see stepwise motion and arpeggiation
in the melody, some repetition and variation of the rhythm,
and something that sounds like a place for a repeat symbol
after 8 bars, but otherwise the melody is just wandering as
in Fig. 10. Figure 11(bottom) shows that the model gradu-
ally loses interest in sampling measure tokens until step 186,
when it tries to sample | with a probability mass of 0.9.

From these experiments then it appears that the “ability”
of v2 to build melodies having the long term structure we
see in the training data — which is apparent in Fig. 1 and 8
— heavily depends on measure tokens.

Displacement at the softmax layer
Since the values are additive inside the softmax (6), we can
derive what they mean in terms of the change in probability
for any specific token. For the nth token with pre-softmax
value [w]n displaced by some δ ∈ R, we want to find α in
the following:

[p′]n = [softmax(w + δen)]n

= exp([w]n + δ)/
∑
m

exp[w + δen]m = α[p]n (10)

where en is the nth standard basis vector of R|V|, the expo-
nentiation is applied element-wise, and

[p]n = [softmax(w)]n = exp[w]n/
∑
m

exp[w]m. (11)

Using this we can rewrite the denominator of (10):

∑
m

exp[w + δen]m =

[∑
m

exp[w]m

]
− exp[w]n

+ exp([w]n + δ)

= exp[w]n
1− [p]n

[p]n
+ exp([w]n + δ). (12)

Substitution of this into (10) and solving for α finally gives

α =
1

[p]n + e−δ(1− [p]n)
, δ ∈ R. (13)

6
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Figure 11: Top: Probability of folk-rnn model v2 sampling the measure token | during the generation of the transcription in
Fig. 10 (with the same random seed as Fig. 1). Bottom: Probability of folk-rnn model v2 sampling any measure token during
the generation of the transcription in Fig. 12 (with the same random seed as Fig. 1). In each we show the tokens sampled in
place of the suppressed ones.

8
6

Figure 12: The first half of the transcription generated by
folk-rnn model v2 with the same random seed as Fig. 1,
but suppressing its output of any measure token. Dashed bar
lines added manually to assist with grouping according to
the meter. Figure 11(bottom) shows the probability of any
measure token in this generation, and the tokens that were
sampled instead.

Rearranging this expression, we can find what displacement
δ is necessary to amplify or attenuate the probability of the
nth token by a factor α:

δ = log
1− [p]n
1
α − [p]n

, 0 ≤ α ≤ 1/[p]n (14)

with the limits given by the axioms of probability. The sam-
pling temperature Ts is implicit in these relationships, i.e.,
the computation of p in (6).

Applying the above to the hidden state of L3 unit 497,
we can see from Fig. 4(middle) that if it were to saturate in
the positive direction (+1), then, all other things remaining
equal, it would almost quadruple (α = 3.94) the probability
mass of token index 130 (=B, and δ = 1.54) if it were ini-
tially about 5% probable ([p]130 = 0.05). If this same unit
output −1, then, all other things remaining equal, it would
decrease the probability of =B, by a factor of about 1/4 if

8
6

1 2

1 2

Figure 13: The transcription generated by folk-rnn model v2
with the same random seed as Fig. 1, but attenuating the soft-
max probability of token A, (dimension 106) by the factor
α = 0.01 (transposed up one octave for readability).

it were about 5% probable. Figure 13 shows the transcrip-
tion generated by v2 using the same random seed as Fig. 1,
but with an attenuation of the probability of the token A,
(dimension 106) by a factor α = 0.01. We see the two tran-
scriptions share many of the same features, but this one does
not go to the relative minor.

We can also find how to deviate the hidden state of L3
to produce a displacement of just the nth token in the soft-
max layer. We want to find ∆h ∈ [−1, 1]512 such that
en = Ws∆h. Since Ws ∈ R137×512 and has full row rank,
there can be an infinite number of solutions. We could use
the psuedoinverse of Ws to find the ∆h that has the mini-
mum Euclidean norm. However, from Fig. 6 we see the L3
hidden state is typically sparse. Hence, we can look for a

7
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Figure 14: Deviation ∆h of the layer three LSTM hidden state that attenuates the probability of token A, (dimension 106).

solution to the following:

∆h = arg min
h∈[−1,1]512

‖h‖0 subject to

‖Wsh− en‖2 < ε, ‖h‖∞ ≤ 1 (15)

for ε ≥ 0. Disregarding the infinity norm, this can be solved
approximately by the LASSO (Tibshirani 1996), essentially
replacing the `0-pseudo-norm with the `1-norm and then us-
ing convex optimisation. Figure 14 shows an L3 hidden state
deviation ∆h that amplifies or attenuates the softmax prob-
ability of the token A, (dimension 106).

Conclusion
We have analysed the parameters of the softmax layer of a
specific folk-rnn LSTM model in order to gain insight into
how it is working. Since the model is just a series of affine
linear transformations and non-linearities, multivariate anal-
ysis can be used to uncover the effects of its parameters. We
start with the softmax layer (6), which in turn illuminates the
behaviour of the third LSTM layer. We use singular value
decomposition to discover and understand the significance
of subspaces of the column space of Ws in terms of the
transcription vocabulary. This leads us to uncover the criti-
cal importance of measure tokens to the model’s success in
constructing transcriptions with plausible global characteris-
tics. Our analysis also leads to ways to adjust the behaviours
of the model, e.g., perturbing the L3 hidden state in order to
attenuate the probability of particular tokens. Our next steps
involve propagating our findings here to analyse the contri-
butions of the LSTM layers.
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