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Abstract

The paper describes a metacreative system for real
time algorithmic composition of audio mashups and
synthetic soundscapes that pivots on evolvable media
repositories, i.e., local pools of related media content
that are retrieved, and ever-renovated, over the WWW
in an evolutionary fashion. The model also involves
a sophisticated soundscape generator, a context aware
composer to parametrise it, and a machine listening
module performing onset detection and spectral profil-
ing in non-real time. The soundscape generator relies on
pattern-based generators to spawn complex and contin-
gent audio sequences in both deterministic and nonde-
terministic fashions, and is also capable of refined 3D
acoustic spatialisation—and multi-channel rendering—
with respect to virtual listeners and sonic sources.

1 Introduction and motivation

The aim of the present work is to construe a metacreative
system for real time algorithmic composition of audio
mashups—i.e., audio collages that comprise pre-recorded
music and other found sounds—and synthetic soundscapes,
in an algorithmic fashion and with respect to the broader
computer/experimental music tradition. The system is based
on dedicated hardware and a series of embedded software
components implementing an evolvable media repository
(EMR), and miscellaneous modal and cross-modal synthesis
modules for the generation of images and video, in addition
to the audio. The implementation is designed so that the sys-
tem autonomously generates multichannel audio to be used
in the context of sound and media art installations.

The system is meant both as digital art of an exper-
imental kind, and as a hands-on endeavour to explore
and probe the materiality of user-generated content (UGC)
repositories of audio, and of the technologies we rely upon
to interact with them. Accordingly, the model draws on
the broad tradition of material-driven and epistemologi-
cally concerned art (Koutsomichalis 2015; Gough 2005;
Barrett and Bolt 2013) and primarily supports the explo-
ration, rather than the integration, of existent internet-based
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UGC databases. In contrast to other approaches to auto-
matic audio composition—e.g. (Collins 2012)—and music
mashups—e.g. (Davies et al. 2013; Tokui 2008)—the sys-
tem does not select content that may best fit some particular
aesthetic or functional goal, but rather aims at foreground-
ing and exposing all sorts of disparate aesthetic, and non-
aesthetic, orderings that the available data and their associ-
ated meta-data may themselves imply.

The rest of the paper zooms in the technical specifics of
the proposed model, and on its implementation. The next
section outlines related research. Then Section 3 explains the
model in detail, elaborates on its constituent parts, and gives
some implementation details, while Section 4 discusses the
resulting audio, and the model’s performance. Directions for
future research and concluding remarks follow.

2 Related work

There are several documented approaches to algorithmic
audio mashup generation ranging from intelligent semi-
automatic composers (Davies et al. 2013; Griffin, Kim, and
Turnbull 2010), to sophisticated web-based collective sys-
tems (Tokui 2008). However, the vast majority of existing
systems concern popular music (Gunkel 2011), and are ei-
ther meant to be utilised in some functional context, or re-
sult in ‘toy’ compositions. In particular, literature on au-
dio mashup generation often overlook a long train of real,
and non-real, time composition practices concerning the cre-
ative, and metacreative, use of existent and ad hoc reposito-
ries of audio/music (Koutsomichalis 2016).

The present work concerns the production of abstract syn-
thetic audio in a purely metacreative fashion, focusing on
the particular orderings the data themselves bring forth, as
well as on the semantic cross-associations that are forged
among them. As such it is indifferent to beat-synchronicity,
pitch/time shifting techniques, user interaction, and simi-
lar traits that typically concern functional systems for mu-
sic mashups, but is instead relevant to, and draws upon: (a)
soundscape studies (Wrightson 2000), and an array of rele-
vant composition practices that are broadly concerned with
the juxtaposition of ‘found’ sounds of natural, wildlife, ur-
ban, or other origin (Truax 2002; Westerkamp 2002; Drever
2002; Koutsomichalis 2013); (b) those particular traits in
the broad ‘acousmatic’, electroacoustic, and computer music
traditions that pivot on the manipulation of found sounds to



generate (abstract) narratives that are not necessarily rhyth-
mical or beat-synchronous. It should be, nevertheless, noted
that ’synthetic soundscapes’ does not nevessarily refer to
recorded sounds of natural or other origin; we rather refer to
abstract compositions that, like most real-life soundscapes,
comprise sonic events that are widely distributed, and often
move, in acoustic space.

Automatic/algorithmic soundscape composition has pre-
viously been addressed within augmented reality (Warusfel
and Eckel 2004), the video-game industry,! and other func-
tional contexts (Misra, Wang, and Cook 2007; Valle, Lom-
bardo, and Schirosa 2010). SoDA, Sound Design Accelera-
tor (Valle et al. 2014) concerned the algorithmic composi-
tion of soundscapes with respect to a series of user-defined
natural language queries describing the content and fea-
tures in terms of desired constituent sound events/sources.
SoDA was originally intended as a tool for sound designers
to use in real-life (pre-)production contexts, but one of its
constituent modules, Soundscape Generator (SSG) (Kout-
somichalis and Valle 2014), was designed to facilitate
context-agnostic multichannel soundscape composition in
both real and non-real time and is therefore potentially ap-
plicable to arbitrary functional and artistic endeavours.

The present work relies on techniques first introduced in
SSG, but here the focus is on exploring the repositories of in-
terest in their entirety and simultaneously. This brings forth
the question of how to navigate databases that are astronom-
ically big in some structured fashion, possibly revealing im-
plicit endogenous narratives on the way. The question of
querying, or otherwise navigating, the available data space
is central to any project concerning large pools of media
content—it is typically with respect to how data are retrieved
that they acquire value in some artistic or functional context.
For instance, in the case of Napier’s Pam? series of works,
all queries pivot on Pam Anderson, who in this way becomes
the thematic axis of the project. Manovich’s Selfiecity and
On Broadway (Manovich 2015) rely on more sophisticated
queries, exploring Instagram for photos that ascribe a par-
ticular structural—i.e., being a ‘selfie’—or geographical—
i.e., being shot in Broadway Street—attribute. In the case of
SoDA, or (Koutsomichalis and Gambéck 2018) concerning
computational solid modelling employing media retrieved
from UGC repositories, natural language queries (NLQ) are
performed automatically with respect to user-defined text in-
put.

Of particular relevance here is Audio Metaphor (Thoro-
good and Pasquier 2013), a metacreative system producing
sound-art from short natural language tokens provided by a
user or received from Twitter. The language queries retrieve
labelled audio recordings from FreeSound? that are, subse-
quently, segmented by a supervised machine learner trained
on data from human perceptual classification experiments
and, finally, processed and juxtaposed employing a modelled
composition schema. Audio Metaphor has been successfully
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Figure 1: Interaction schemata between constituent modules
(the nodes on the top are identical to the ones at the bottom)

used in conjunction with Re:Cycle (Bizzocchi 2011)—a sys-
tem for real-time generative video synthesis—generating au-
dio that may relate to the video track in a number of different
fashions (Eigenfeldt et al. 2014).

The present work shares some common ground with Au-
dio Metaphor, both regarding method and scope, but relies
on a much more sophisticated database management sys-
tem, creating an evolvable media repository (EMR) in order
to crawl several UGC repositories of interest (FreeSound,
YouTube, SoundCloud, Wikipedia, etc.) for media content.
The repository ever-populates itself contingently, while re-
specting, to a varying degree, the semantic associations sug-
gested by both content and meta-data. It maps language
queries to graph-based genotypic representations, and re-
lies on modularly attached media ‘comprehenders’ to make
sense of the retrieved content and associated meta-data. In
contrast to Audio Metaphor, the technical realisation piv-
ots on ambisonics (Malham and Myatt 1995) for 3D audio
spatialisation and may thus deliver truly immersive multi-
channel audio in real-time.

3 Method and implementation

As shown in Figure 1, the system comprises four modules:

EMR, evolvable media repository: crawling—in an evo-
lutionary fashion—YouTube, Soundcloud, Freesound,
and other online repositories for related media content.

AU, audio understanding: performing onset-analysis and
spectral feature extraction.

SG, graph-based Soundscape Generator: real-time tem-
poral scheduling, localisation in 3D acoustic space, and
appropriate multichannel encoding/decoding.

CM, composition module: generating contingent sonic
sources in various flavours from the retrieved media con-
tent, and parametrising SG accordingly.

The figure illustrates the ways in which modules interact
with one another. The following subsections scrutinize the
modules and their interactions in detail. With the exception



of EMR, which is implemented in Python, all modules have
been coded in SuperCollider (McCartney 2002).

3.1 Evolvable media repository, EMR

Evaluation and selection are almost unanimously accepted
as essential steps in every Evolutionary algorithm (EA). De-
spite being debatable to what extent such solutions succeed
in generating genuine artistic value in real-life contexts (Mc-
Cormack 2005; Bown and McCormack 2010), the vast ma-
jority of art-oriented EAs tend to rely on fitness functions
of some sort—as shown, for instance, in (Johnson 2012).
Our EMR, nevertheless, does not employ fitness function
and does not rely on selection processes. It should be rather
thought of as an ad hoc solution pivoting on mutation for the
sake of variance, and in order to generate new and original
content for the sake of it.

EMR encodes genotypic space through undirected graphs
of natural language tokens on the form (V, E'), with V being
a set of vertices {v1,vs,...,vn}, n € Z*, v, € U* and
v, # —U* comprising all possible word sequences over
the unicode character set; and E a (possibly empty) set of
pairs {vy, vi } for some vy, v, € V and v, # vi. The EMR
algorithm can be formulated as:

(0] (Gp_ :
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where (S) is the ‘seed’, i.e., the genetic material of the initial
population; @, : PI — G a ‘comprehender’ relation map-
ping a phenotypic element—in this particular context, phe-
notypes should be thought of as the resulting pools of media
files, P € W (with W representing the WWW) of type A
back to genotypic space; and \;: Gt — P* a ‘crawler’
relation retrieving content from some online repository and
keeping it locally. The resulting phenotype comprising the
retrieved media files after k iterations of the algorithm is:

P, = U )\i(Gk) 2)

Note that the vertices in a genome need not necessarily
be meaningful natural language tokens, the various natural
languages being just a subset of U*. The genome may prop-
erly encode and hierarchically represent arbitrary semantic,
lexical and symbolic relationships that may arise naturally
in different contexts and irrespective of particular human or
machine languages, codes, and esoteric jargons.

Implementing an EMR is then a question of defining a
representation for G¢,,, designing appropriate crawlers \; for
the repositories of interest, and appropriate comprehenders
® 5 needed to understand them. In our implementation, all
crawlers inherit from an AbstractCrawler class and are
required to implement an iterator over the results, as well
as methods to query for, retrieve, and post-process content,
and retrieve metadata and associated para-texts. Implement-
ing such methods is of varying complexity, depending on
the particular APIs and the authorization specifics at play.
We have implemented crawlers for YouTube, SoundCloud,

Freesound, Wikipedia, MLDB, WordNet, Flickr and Con-
ceptNet, that retrieve audio content (extracted from video
in the case of YouTube), associated meta-data such as text
descriptions, tags and user comments, encyclopedic text en-
tries, music lyrics, synonyms, and related terms. Retrieving
also non-audio content (such as text or image) makes sense
here since that kind of content may still be ‘comprehended’,
in this way contributing semantically to the evolution cy-
cle. In our implementation, all comprehenders inherit from
an AbstractComprehender class and are required to
implement methods to prepare and understand data, and to
take care of any cleaning tasks. We have implemented three
types of comprehenders: an image comprehender employing
the Inception-v3 (Szegedy et al. 2016) network and trained
on the ImageNet (Deng et al. 2009) LSVRC-2012 challenge
data set; a text comprehender that relies on a RAKE (Rose
et al. 2010) algorithm for natural language understanding to
have the input reduced into a series of associated queries;
and a trivial ‘tag’ comprehender that merely assembles a
graph out of every available tag token.

All comprehenders result in fully connected weighted
graphs that may be merged together into singleton represen-
tations. In such merged graphs, queries are interconnected
with (a) all other queries generated by the same comprehen-
der for the same media file, and (b) all other queries that
any other comprehender has deemed relevant to this partic-
ular query in the context of some other file. Iteration over
some genotype G respects such associations, so that every
vertex output w,, is either the next highest ranking vertex
connected to u,,_1, or the next highest ranking vertex that
has not already appeared in the output. Then, as crawlers it-
erate through a genome, they draw queries in such a fashion.

EMR is modular and may be parameterised. It is possi-
ble to select what crawlers and comprehenders should be
utilised, how long the retrieved audio files should be kept,
what is the maximum number of files that should be re-
trieved per crawler or per iteration cycle, and a number of
other parameters.

3.2 Audio Understanding, AU

The audio understanding module utilises a series of
SuperCollider-specific machine listening unit genera-
tors (Collins 2011) to perform onset analysis and feature
extraction in non-real time. During onset analysis, a vec-
tor is generated comprising the times throughout the dura-
tion of the piece when some kind of change (e.g., in pitch,
rhythm, or timbre) has been detected. Onsets are found by
a SuperCollider implementation of the ‘adaptive whitening’
onset detection algorithm (Stowell and Plumbley 2007), and
utilised by the composition module when fragmenting the
files in constituent chunks of audio. During feature extrac-
tion, AU analyses the audio spectrum in regular time inter-
vals T'—a user-defined argument—capturing analysis snap-
shots throughout the duration of the input file. The particu-
lar features of interest herein are the centroid (the weighted
mean frequency of the spectrum), the spread (the magnitude-
weighted variance of the spectrum), and the complexity (a
value representing how ‘complex’ the spectrum is, with the
extremes being white noise and a single tone). AU results in



a matrix of features:
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where c,u,s represent the resulting vectors for centroid,
complexity, and spread, respectively, and with n = L%J,

L being the length of the audio file. In the implementation,
all features are normalised to the [0, 1] range.

3.3 Soundscape generator, SG

The Soundscape generator is a heavily modified fork of SSG
originally used in SoDA, and supports:

o 3D sound localisation that takes into account the position-
ing of a virtual listener and of the various virtual sonic
sources, as well as their sizes (spatial footprints), but not
a sound-zone’s acoustic features as the original SSG.

e Deterministic and nondeterministic temporal scheduling,
and localisation of individual sounds in acoustic space.

e Deterministic and nondeterministic generation of com-
plex sound events out of atomic sound samples.

e Modelling of sound events, the virtual positioning of
which may move deterministically in 3D space.

e Multipurpose audio decoding to arbitrary (possibly multi-
channel) speaker configurations.

e Real-time (only, unlike SSG) rendering of sonic sources
on-the-fly as they are added to or removed from the inter-
nal synthesis graph.

The SG renderer expects as arguments the 3D bounds of
the acoustic space, a ‘listener’ object (which may be fixed or
movable in acoustic space), and a ‘decoder’ object that man-
ages the desired output format. SG relies on an ambisonic
spatialisation algorithm (Malham and Myatt 1995), so that,
given the appropriate decoder, the same audio stream may be
decoded to any of the standard formats such as mono, stereo,
or quad, but also to custom, arbitrary periphonic, or holo-
phonic, speaker configurations. Once the renderer has been
initiated, ‘sonic sources’ may be added to, or removed from,
the internal synthesis graph. Three types of such sources are
currently employed:

Atmosphere: non-directional sonic ambience.
Fixed Sound: fixed directional sources.

Ambulatory Sound: an ambulatory directional source.

All sonic sources are associated with pattern-based audio
‘sequences’ of arbitrary complexity, and with some repeti-
tion pattern. Directional sonic sources have two additional
arguments: the size of the virtual sonic object they represent
and its spatial coordinates in acoustic space. These are either
a fixed point (fixed sound), or three envelopes representing
trajectories for each spatial dimension (ambulatory sound).
Audio sequences in SG are specified employing the
SuperCollider’s inbuilt list-pattern generators (Kuivila

2011) that include representations for linear sequences, ran-
dom selections from lists, probability-based number gener-
ators, random walks, and other similar mathematical con-
structs that provide a conceptually straightforward and
highly expressive way to model streams of values. More-
over, such patterns may be chained or nested recursively, al-
lowing for a compact notation of very complex behaviour.

An audio sequence S is formally defined as a tuple of re-
lations (0: Ny, — H,p: No; — Q) representing list pat-
terns of arbitrary complexity, with ¢ returning memory lo-
cations holding audio content—H comprising all available
memory slots—and p returning time durations. Note that the
two relations are only defined within the intervals [0, k) and
[0,4), respectively, for some k and i that may or may not
be equal, and that may be infinite. Playing back some au-
dio sequence is to evaluate o and p with integer increments
0,1,2,...,n, with n < min(k,n), at irregular time inter-
vals and following the output of p, so that audio stored in
o(n) is performed for p(n) number of seconds and, when
done, audio stored in o(n+ 1) is performed for p(n+1) sec-
onds, etc. As currently implemented, whenever p(n) = 0,
o(n) is played back in its entirety.

Once a source is added to the synthesis graph, it is im-
mediately scheduled for play-back with respect to an asso-
ciated pattern-based relation g : N, — QT returning val-
ues representing silent pauses before the first, and between
all subsequent, appearances of their encapsulated audio se-
quence. Performing the latter is to route its audio output—
which as is generated contingently in real time—first to
an appropriate localisation synthesizer and then to the out-
put decoder. Localisation takes into account the differences
Ag(t), Ay(t), A,(t) between the listener’s positioning and
that of the sonic source for each dimension in some discrete
time ¢ € Z (measured in samples), as well as the source’s
associated size 7.

The encoding is better understood in terms of a radius
p(t) = V/AL()2+Ay(t)2+ A.(t)2 — %, together with

Ay ()

an azimuth angle ¢(¢) = arctan ) and a zenith angle
0(t) = arccos A;(g) . Then the b-format ambisonic signal is:
o 7
x(t cos 6 cos ¢
=aA(t 4
y(t) aA(t) sin 6 cos ¢ @
2(t) sin ¢

where a is a user-defined amplitude factor. In the case of
stereo signals, the right part of Equation 4 becomes:
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where A;, A, are the left and right channels, respectively.
Then, the renderer mixes together the resulting sound-
fields [w;(t), z;(t), y: (t), z;(¢)] for all i active sonic sources,
and routes their sum to the user-defined decoder D which
handles the actual multichannel audio output vector o.
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Decoders of various kinds may be employed, mapping
the resulting ambisonic sound field to an appropriate array
of audio signals to drive one, or more, speakers in mono,
stereo, 5.1, 7.1, quad, octaphonic, or some other arbitrary
periphonic or pantaphonic configuration.

3.4 Composition module, CM

The composition module takes into account the origin of
the retrieved audio files, their spectral profiles as generated
by AU, and a series of predefined composition rules. Fig-
ure 2 illustrates the activity cycle. For whatever new files
found in the EMR, CM asks AU to perform an onset analy-
sis, and then fragments the original file into short, longer or
long chunks with respect to both their origin and duration.
It then appends them to audio sequences, calculates the spa-
tialisation coefficients, spawns sonic sources, and adds them
to the synthesis graph for immediate reproduction. Follow-
ing the requirement for a system that can be publicly ex-
hibited in some real-life setting, the waiting patterns for all
sonic sources are such that they repeat themselves after a
few minutes—in this way guaranteeing that audio playback
is continuous. An auxiliary mechanism featuring a priority
queue is constantly monitoring the loop, so that old sources
are removed from the synthesis graph, and so that used audio
files and chunks are deleted from the EMR, once a sufficient
number of new files have been downloaded and processed.

For content retrieved from SoundCloud (i.e., music), or
lasting less than 20 seconds, it makes little sense to em-
ploy ambulatory spatialisation, to reproduce it in its origi-
nal form, or to spawn more than one sequence per audio file
— at least not in system’s current aesthetic setting. Accord-
ingly, 70% of the times a random walk is performed (i.e,
after some chunk has finished playing back, the algorithm
may continue with the antecedent one, the precedent one, or
the same again) and 30% of the times the chunks are scram-
bled stochastically. Note that such sequences are defined by
patterns and performed dynamically, so their repetitions will
not result in the exact same audio.

The CM cannot make any assumption on the kind of
content retrieved from FreeSound or YouTube, which may
practically concern everything. As shown in figure 2, such
content is fragmented in longer chunks, with respect to the
detected onsets and their original duration, and individual
sonic sources are only generated for some of them. Those
sources are scheduled for reproduction in some random time
in the immediate future (i.e., a couple of minutes at most).
Thus, several chunks originating from the very same file
may happen to sound simultaneously, resulting both in a
thicker soundscape and in a certain kind of spatiotemporal
deconstruction, which is more appropriate when the content
of the file is not known. As also shown in the figure, the CM
takes into account the duration of the original file as well
as the spectral profile of each fragment in order to decide
whether the resulting source is static, ambulatory, or non-
directional.

Sonic sources are then spatialised so that they are well
spread in space in a coherent and compositionally meaning-
ful way. Localisation of a particular source is carried out
by a linear mapping from its associated spectral profile in
[0,1]3 to a Cartesian space C* that spans from the origin
[0,0,0] to a user-defined [X,,, Yy, Zm] First, the vectors

Xm+Ym ste 271 ctu

wav(ﬁ* 6=

These are then mapped to a matrix comprising vectors in C2,
as follows:

uts
7n2

, are calculated.

X p cos ¢
y| = |psing (6)
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In the case of some ambulatory source, and employing lin-
early interpolation, a continuous trajectory in 3D space can
be represented as a continuous function of time ¢ € R,

) = |y pr cossin, + (t — r) L=y )

2(t) Gt (t—r)z

where r, k € N, are column indices in ®, representing dis-
crete measurements in 1" second intervals, and » < ¢t < k.
The actual model (of course) employs a discrete time, sam-
pled, version of f(t).

IN the case of fixed sources, the quadratic means of
L Z?;rgc 2, u —

dimc [

r(t)l pr o8 G + (t — 1) 5=

c,u,s are taken, so that ¢ +—

1 dimu 9 1 dim s
T i uf,and s = /== 30 52, and so that

all ¢, u, s, p, 0, (,x,y, z collapse to scalars. The fixed posi-
tion is then given by Equation 6, replacing all the vectors
with their equivalent scalars.

4 Discussion

Example output compositions rendered in stereo may be re-
trieved from https://tinyurl.com/emrcomp. The
audio files concern excerpts from longer real-time record-
ings lasting several minutes, and are named according to the
seed that initiated the EMR, and a note stating whether they
concern the start, or some subsequent part, of the recording.

As already explained, our original motivation concerned
a system to be used in an installation context and intended
to demonstrate how found content may be creatively ex-
plored. Sound installations, however, pose certain aesthetic
and technical requirements that the model has to address.
Accordingly, the given results reflect a series of design de-
cisions, configurations and optimisations that have been ap-
plied to the model.

First and foremost, the model has been optimised to gen-
erate audio in a continuous and seamless manner. In the con-
text of some installation artwork, audiences are expected
to enter and leave at their own discretion, typically spend-
ing just a few minutes of active listening. Hence it is more
important to guarantee that output of some complexity is
present at any given moment, than to focus on the time-based
development of texture and content. The system has there-
fore been designed so that it will not remain silent for more
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Figure 2: Activity cycle

than a few seconds and so that no definite start or end is im-
plied. To make it aesthetically meaningful to keep listening
for more than a few minutes, audio material is recycled in
a nondeterministic fashion, employing pattern-based tactics,
so that whenever materials already used are repeated, they
are ordered differently temporarily and juxtaposed with re-
spect to one another.

It should be added that, in some real-life installation set-
ting, it is practically impossible to guarantee that new audio
is retrieved in short, or regular, intervals. The frequency in
which EMR draws material from WWW depends on a se-
ries of factors such as network speed, CPU power (e.g., in
the case of YouTube, CPU-intensive processing is necessary
to pre-process the audio file), the size of files to download,
hard disk speed, and other factors. Recycling of audio con-
tent is, therefore, both inevitable and desired.

The choices regarding the particular repositories the
model pivots on, and the particular ways in which it decon-
structs and reconstructs the retrieved audio follow the artis-
tic reasoning of the broader project. Here the focus has been
on three of the most famous and widely used repositories
for peers to share music, and on arbitrary sound recordings
so that the audio/music content of the WWW is explored in
its true volume and variety. De-/re-construction is then per-
formed by means of random walks, scrambling, fragmenta-
tion, and concatenation, so that the system explores the raw
material in a variety of different ways, often resulting in dif-

ferent kinds of textures, and so that the original structure and
content of the retrieved files are maintained to a varying de-
gree.

Several other parameters control the maximum number of
files to be simultaneously present in the synthesis graph, the
approximate number of audio fragments to consider, their
maximum and minimum duration, the size and geometry of
the virtual acoustic space, and, most importantly, the per-
centage by which the repositories of interest contribute to
the EMR. All sorts of different settings of these parame-
ters have been experimented with, but preference has been
given to YouTube and SoundCloud, since the applications
currently studied in particular concern popular music and
culture. In the given examples the maximum numbers of
files/fragments to consider range from 4 files and 4 frag-
ments per file, to 8 files and 10 fragments per file. Larger val-
ues could certainly make sense in other aesthetic contexts,
but currently the main concern has been to make explicit (or
at least imply), the origin of, and possibly any special conno-
tations of, any sound, music, and spoken word that appear in
the output—this would be hard, if not impossible, to achieve
in an overly dense soundscape. Note also that, despite the
Sound Generator being capable of complex and sophisti-
cated audio localisation patterns, rather restrained settings
have currently been used in order to avoid distraction.

From a compositional point of view, the output of the
model ranges from lengthy audio mashups, to abstract



sound synthesis, to clear-cut music gestures, and even to
narration—often in the course of the very same session. ac-
count for two very different textures.

Rhythmic sections, semi-diegetic sections, and referen-
tial gestures, occasionally emerge. Albeit being secondary
affairs from a technical viewpoint (priority been given to
having continuous audio in the output even in the case of
some network failure), they are desired as far as the particu-
lar artistic rationale of the project is concerned. It should be
emphasised that such phenomena are not at all haphazard,
but depend on both the particular ways in which the CM ma-
nipulates the retrieved data (i.e., allowing fragmentary and
contingent reproduction, but not to the extent that they are
unrecognizable) and, most importantly, to how EMR is con-
figured. Here, for instance, EMR takes into account music
lyrics, encyclopedic entries, and semantic associations, in
addition to any meta-data associated with the retrieved au-
dio files. In this fashion, the system may better resolve, and
represent, implicit thematic relationships, resulting in audio
files that relate to one another in varying ways.

5 Conclusion and future work

The paper has described a system for the real time algo-
rithmic composition of audio mashups and synthetic sound-
scapes, employing an evolvable media repository, a compo-
sition module, and a sophisticated soundscape generator. If
properly configured, the system produces audio that does not
collapse to arbitrary mashups or to the same ever-repeating
textures, but instead is characterised by ever-contingent tem-
poral development both insofar as content and texture is con-
cerned. The output of the system may range from monolithic
audio collages, to abstract synthesis, to music narratives, to
clear-cut music gestures, and almost diegetic hybrids, by
virtue of manipulating ever-renovated related audio content.

The system is meant to be used in the context of a broader
media installation artwork and, accordingly, it is a strong
requirement that audio may be generated continuously and
seamlessly, even in the case of network failure. Hence, the
configuration is such that retrieved audio is ever-recycled
until the EMR delivers new content. However, the design
also guarantees that whenever the very same audio content
is used, it will always result in contingent and more or less
different temporal orderings, thus revealing alternative cre-
ative perspectives on how the given audio may be re-used.
In addition, it is possible to specialise the EMR so that it
zooms in on repositories having particular kinds of content,
and so that additional resources (e.g., encyclopedic entries or
semantic associations) are employed in order to resolve and
represent thematic relationships, resulting in audio content
with a higher likelihood to spawn music narratives, gestures
and even diegesis. The system is potentially of use in a broad
range of computer music, sound, and media art contexts that
concern the creative re-appropriation of found content—at
the very least as a source of inspiration, but also as a con-
crete algorithmic paradigm for others to re-configure or ex-
tend. So far, its creative potential has only been explored in
the context of some particular artistic project and with re-
spect to the requirements it imposes. Still, the model can be

made to fit several other composition paradigms and gen-
res of various shorts—as is, or with minor modifications.
For instance, it is trivial to extend the system so that it gen-
erates beat-synchronous mashups. It could be also used as
is in an off-line and interactive fashion, automatically gen-
erating contingent collages and microscopic narratives that
could later be used selectively in the context of some studio-
based electroacoustic music composition.

The model already satisfies the requirements of the
project, given its experimental scope and speculative aes-
thetics. We, nevertheless, intend to extrapolate the paradigm
of EMR-driven synthesis to other media, designing and im-
plementing algorithmic composers producing video, image,
text, and other artefacts, in a generative fashion. We are cur-
rently working towards designing synthesizers generating
3D-printable solid models, and images.
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