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Abstract 
This paper describes a machine-listening based system de-
veloped for an interactive composition for soprano saxo-
phone and electronics. The auditory processing stage of the 
system consists of a feedforward Neural Network trained to 
perform real-time recognition of different playing tech-
niques (single notes, multiphonics, air tones and slap tones). 
This classification algorithm is embedded in four interaction 
scenarios that entail different compositional instructions and 
listening modes, including selective listening modes and a 
non-listening state. The integration of a classification task in 
the auditory processing stage of the system has the purpose 
of shifting the focus of machine listening from sensory (sig-
nal-level features) to symbolic information (composer-
defined sound classes), enabling the design of idiosyncratic 
agent behaviors in the context of composed, scenario-based 
sonic interaction. 

 Introduction   
Assuming Paine’s (2002) conversational model of interac-
tion (i.e. two humans engaging in a conversation) and the 
fundamental, yet often overlooked, distinction between 
responsiveness (re-action) and interaction (Paine 2002; 
Drummond 2009), most examples of human-computer 
interaction fall into the category of reactive, rather than 
interactive systems. Paine (2002) suggests that cognition is 
a requirement for interactivity and claims that most com-
puter music systems are in fact reactive and not interactive, 
because they lack the element of cognition. Machine listen-
ing, as a simulation of a human cognitive process, has 
therefore unsurprisingly become the main modality for 
human-computer interaction in interactive performance 
and improvisation systems. In these systems, “listening” 
functions as a two-way communication channel between 
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the musician and the computer, allowing both parties to 
perceive each other’s actions through auditory information. 
 According to Rowe’s taxonomy of interactive music 
systems (Rowe 1993), such systems can be described as 
performance-driven systems that follow the player para-
digm – as opposed to the instrument paradigm. The majori-
ty of these systems were designed for human-computer 
improvisation and only a few have been used in individual 
compositions (Young 2007; Van Nort et al. 2009; Smith 
and Deal 2014).  
 The system presented in this paper falls under the latter 
category and was developed for an interactive composition 
for soprano saxophone and electronics. An interactive 
composition is a composition involving real-time interac-
tion and mutual adaptation between a musician and a soft-
ware agent, and entailing one or more interaction scenari-
os, pre-scripted in terms of sound material and interaction 
affordances. Both compositional instructions (i.e. score) 
and agent behaviors are summarized under the term sce-
nario, which in this context takes a different meaning than 
its use in the context of human-computer improvisation (a 
predefined temporal structure used to guide improvisation 
(Nika et al. 2017)).  
 Along with “composed” improvisation and “comprovi-
sation” (Dudas 2010), interactive composition is another 
point on the spectrum between free improvisation and 
“fixed” composition. What distinguishes it from free and 
“composed” improvisation is idiosyncratic (composition-
specific) agent behavior in combination with a non-linear 
score, consisting of both descriptive and prescriptive nota-
tion (i.e. sound descriptions and prescribed actions, to be 
performed in response to the software agent’s “actions”). A 
significant difference between an interactive composition 
and the act of comprovisation or interactive composing 
(composing while performing with an interactive system 
(Chadabe 1984)) is that in the case of an interactive com-
position the act of composition precedes that of perfor-



mance and does not coincide with it. What takes place in 
real-time is the interaction between the musician and the 
software agent and not the compositional process itself. 
Furthermore, composer and performer are not necessarily 
the same person (hence, the need for a score). 
 An example of such an interactive composition is de-
scribed in the following section. The auditory processing 
stage of the software agent consists of a feedforward Neu-
ral Network trained to recognize four predefined sound 
classes (single notes, multiphonics, air tones and slap 
tones), allowing the software agent to interact with the mu-
sician on the basis of symbolic music information (a dic-
tionary of sound classes defined by the composer), ob-
tained through lower-level sensory information (signal-
level descriptors). The results of this instant recognition are 
stored, enabling the agent to deduce information regarding 
the texture variability of bigger sections of the piece. In-
formation collected in the auditory processing stage of the 
system is used to control the parameters of a signal pro-
cessing and sound synthesis algorithm. Correspondingly, 
the musician is asked to adapt to the sound output of the 
computer in real-time, by interpreting a non-linear score1. 

Neurons 

The Neural Network 
The use of machine learning, and specifically unsupervised 
learning algorithms such as clustering algorithms, Self-
Organizing Maps (SOMs) etc., in the auditory processing 
stage of interactive music systems is becoming increasing-
ly common (Thom 2000; Young 2007; Collins 2008 and 
2011; Lévy et al. 2012; Yee-King 2011; Smith and Deal 
2014; Tatar and Pasquier 2017; Gioti 2017). Unsupervised 
learning favors the discovery of structure in unlabeled data, 
a feature that has obvious advantages for applications in 
improvised music.  
 In the case of compositional applications, however, the 
use of supervised learning could be equally interesting, by 
allowing the design of less generic and more idiosyncratic 
– i.e. composition-specific – listening strategies. An exam-
ple of such an approach is the system described in this pa-
per, which employs a supervised machine learning algo-
rithm, particularly a feedforward Neural Network (NN) 
trained to recognize four different sound classes: single 
notes, multiphonics, air tones and slap tones. Background 
noise was added as a fifth class to the classification task in 
order to integrate noise gating in the recognition process. 
As a result, the listening algorithm requires no noise gating 
and therefore no threshold adjustment in run-time.  

                                                
1 A video recording of a performance of the piece is available at 
http://www.artemigioti.com/demos/Neurons.html 

 The training data for the NN was collected in four re-
cording sessions with the help of two saxophonists. The 
recording sessions were conducted in two different rooms 
with microphones of different directionality (one super and 
one hyper-cardioid) and placement (clip-on and stand re-
spectively). Each of the musicians used a different soprano 
saxophone. Collecting samples from more than one musi-
cians/instruments and recording setups aimed at ensuring 
adequate variability in the training set and avoiding overfit-
ting (the problem of a machine learning algorithm fitting 
the training set very well, but failing to generalize on pre-
viously unseen examples). For the same reason, initially 
synthetic data was generated by applying filters and artifi-
cial reverberation on some of the recorded examples. 
However, while the examples from the second saxophonist 
seemed to improve the performance of the algorithm, the 
synthetic data had the opposite effect and was abandoned 
later in the training process.  
 The recorded examples were edited manually to remove 
any ambiguities that could lead to data mislabeling (e.g. 
unstable multiphonics) and analyzed using a window size 
of 2048 samples and 50% hop size. The data set was parti-
tioned into three separate sets: a training set consisting of 
23889 examples (about 60% of the data set), a cross-
validation and a test set (each about 20% of the data set). 
Each example consisted of a feature vector and a label be-
tween 1 and 5 (e.g. 1 for single notes, 2 for multiphonics 
etc.). The feature vector included 13 Mel Frequency 
Cepstral Coefficients (MFCCs) and a few additional fea-
tures such as spectral flatness, onset, pitch variation (fre-
quency ratio between the current and previous pitch value) 
and frequency beats. The latter is a binary-valued feature 
used to signal amplitude periodicities that are indicative of 
interference among frequency components of a multiphon-
ic. 
 The NN consisted of the same number of input and hid-
den units that used the logistic sigmoid as an activation 
function, and was trained using backpropagation. During 
the training process several feature sets were tested and 
evaluated both on a separate test set and live with the col-
laboration of the saxophonist. These run-time tests were 
crucial to the development process, since they helped iden-
tify the weaknesses of the algorithm and provided valuable 
feedback for the ongoing training process. For example, 
whenever the network would consistently fail to identify 
certain examples, an additional number of similar exam-
ples would be recorded, or new features would be added to 
the feature vector, in order to help correctly identify the 
misclassified examples (Fig. 1).  
 One of the main challenges of the training process was 
finding a workaround for polyphonic pitch detection. Sev-
eral polyphonic pitch detection algorithms were tested and 
rejected due to their poor performance. Instead, fluctua-
tions in the detected pitch values (resulting from the pres-



ence of more that one pitches) and beat frequencies were 
used to facilitate the recognition of multiphonics. Howev-
er, the detection of beat frequencies made use of a larger 
FFT window size, resulting in a delay in the detection of 
multiphonics. 
 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. NN: training and testing 

  
 When the training process was completed, the accuracy 
of the network on the test set reached 91%.2  In order to 
further improve the performance of the algorithm in run-
time, two common machine learning strategies were ex-
plored: averaging the predictions of the network over a 
certain time span (e.g. averaging every 2-5 predictions) and 
filtering the output of the network based on its confidence 
(outputting only predictions with a probability higher than 
a certain threshold). The first method made the system less 
flexible by increasing its response time, a weakness partic-
ularly noticeable in denser musical textures. The second 
method improved the performance of the network signifi-
cantly, by filtering out some false predictions and increas-
ing its overall accuracy. An additional gain from the use of 
the confidence filter was the integration of sound source 
                                                
2 A video demonstration of the machine listening algorithm is available at 
http://www.artemigioti.com/demos/soprano_sax_sound_event_recognitio
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separation in the recognition process. Concretely, the NN 
seemed to only output predictions for the four classes it 
was trained to classify, “ignoring” any other sounds (i.e. 
the electronics).  
 
 

Figure 2. Saxophonist Joel Diegert testing the NN in run-time. 

Interaction Scenarios 
The classification algorithm described in the previous sec-
tion was embedded in various interaction scenarios, entail-
ing different compositional instructions, agent behaviors 
and, by extension, sonic interaction affordances. Two of 
Truax’s (1984) levels of aural attention (listening-in-
readiness and listening-in-search) are referenced as meta-
phors for some of the listening modes involved in these 
scenarios. 
 
Scenario 1: Listening-in-readiness, listening-in-context 
In this scenario, the occurrence of each of the four sound 
classes causes a different response (listening-in-readiness). 
Single notes and slap tones trigger textures of synthesized 
sounds, air tones are processed by a signal processing 
chain and multiphonics are resynthesized using a “spectral 
freeze” effect. 
 In parallel to this instant recognition process, a measure 
of texture variability is calculated every second, providing 
information on the variability/uniformity of the sound ma-
terial played by the saxophonist over the last ten seconds. 
The value of estimated texture variability is used to control 
the amplitude of low frequency components of the elec-
tronics that become louder as texture variability increases. 
When texture variability reaches a certain threshold value, 
the system temporarily switches off its input and enters a 
non-listening state.  
 However, this should happen no sooner than when indi-
cated in the score, meaning that the musician has to make 
sure that the system does not enter its non-listening state 
too soon. When the low frequency components of the elec-
tronics become considerably louder, the performer has to 



intervene by taking some control action (i.e. playing less 
variable sound material). Air tones are ignored by the vari-
ability measure and can also be used as a regulatory meas-
ure, in order to prevent the system from entering the non-
listening state. 
 In this scenario, the value of estimated texture variability 
is key to the interaction between the musician and the 
software agent, partly due to the “error” factor. Concretely, 
the estimated texture variability can increase both due to 
recognition errors and due to “human error” (e.g. an un-
successful execution of an unstable multiphonic, in which 
the second pitch is difficult to obtain). This part of the 
score contains a large number of such unstable multiphon-
ics, along with other material, organized in short fragments 
the order of which is left to the performer (Fig. 3). 

Figure 3. Neurons: score excerpt. 

 
Scenario 2: Non-listening state 
In this scenario, the sound output of the computer is con-
trolled exclusively by algorithmic processes, involving 
sound synthesis and feedback. During this part of the 
piece, the musician stops playing and waits for an auditory 
cue signaling that the agent is listening again. 
 
Scenario 3: Listening-in-search, listening-at-will 
In scenario 3, the input of the machine listening algorithm 
is switched on and off in search of multiphonics. The agent 
randomly “chooses” when to switch its input on (listening-
at-will) and provides the musician with an auditory cue 
when doing so. The term “at-will” in this context is sug-
gestive of the changed dynamics of the interaction between 
the musician and the software agent and not “free will”: in 
contrast to scenario 1, in this scenario the software agent 
becomes pro-active, limiting the musician to a merely reac-
tive role (Fig. 4).  
 When the software agent is “listening”, the musician has 
to choose from a number of multiphonics in the score and 
play that multiphonic for several seconds. If the execution 

is evaluated as stable by the software agent, the algorithmic 
synthesis processes initialized in scenario 2 are temporarily 
interrupted by a “spectral freeze” effect. Otherwise, the 
musician has to choose a different multiphonic and repeat 
the effort. Sound events other than multiphonics (e.g. sin-
gle notes, air tones etc.) are ignored (listening-in-search). 
 
Scenario 4: Listening-in-search 
In scenario 4, the agent responds selectively to air tones. In 
addition to signal processing, the detection of air tones in 
this mode triggers the playback of resynthesized spectra of 
multiphonics played by the saxophonist earlier in the piece. 
In this part of the piece, the performer can choose from a 
number of actions in the score, which can be executed in 
any order, one or more times. 
 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 
Performer Pro-active Inactive Reactive Pro-active 
Software 
agent 

Reactive Pro-active Pro-active Reactive 

Figure 4. Types of decision-making in the 4 interaction scenarios 
of Neurons. 

 
 In the interaction scenarios described above, machine 
listening and decision-making extend beyond a generic 
one-to-one input-output mapping. The selective listening 
and non-listening modes constitute behavioral elements of 
the agent, which exhibits varying degrees of autonomy and 
responsiveness (Fig. 4). The concept of “error” and its 
double meaning with regard to the human-machine divide 
(human vs computational error) is also explored for its 
potential as an interaction component. For example, in sce-
nario 3 the software agent evaluates the “stability” of the 
execution of multiphonics and responds only when a mul-
tiphonic is stable, while in scenario 1 recognition errors 
can cause the software agent to enter a non-listening state, 
forcing the musician to take preventative actions. 
 With the exception of “listening-in-readiness”, all other 
listening modes involved in these four interaction scenarios 
are exemplary of idiosyncratic agent behavior, specifically 
designed for these scenarios. “Listening-in-search” is a 
particularly good example of such a listening 
mode/attentional strategy. In scenario 3, the software agent 
“listens-in-search” of multiphonics and ignores any other 
sound events. Similarly, in scenario 1 the musician “listens 
for” increases in the amplitude of low frequency compo-
nents of the electronics, requiring him/her to take certain 
control actions. These sounds carry extrinsic information 
related to the compositional idea and the rules of the inter-
action between the two agents and are anticipated by the 
performer – hence “listens for” – as part of that interaction 
scenario. 



Discussion 
This paper presented an interactive machine-listening 
based system using supervised learning to perform real-
time recognition of specific playing techniques. The use of 
machine learning and the integration of a classification task 
in the auditory processing stage of the system aimed at 
shifting the focus of machine listening from analysis to 
interpretation and from sensory to symbolic (McAdams 
and Bigand 1993) information. The term sensory infor-
mation is used to denote signal-level features, extracted in 
the analysis stage of the system, while symbolic infor-
mation refers to higher-level representations of the human 
input (in this case, the four classes recognized by the NN), 
obtained by interpreting analysis data. The objective of this 
approach was to integrate musical terminology in the lis-
tening task; particularly, a terminology that goes beyond 
MIDI-level information (pitch, duration, loudness). 
 The machine listening algorithm described in this paper 
was developed specifically for the composition Neurons. 
Its applicability to other compositions and/or improvised 
performances – though theoretically possible – lies beyond 
the scope of the work described here. The purpose of this 
work was not to create a general-use perfor-
mance/improvisation system, but to explore the application 
of supervised learning in specific interaction scenarios 
within an interactive composition.  
 While the use of unsupervised learning may be prefera-
ble for human-computer improvisation systems, due to the 
higher degree of unpredictability involved in improvisa-
tion, in the case of compositional applications idiosyncratic 
agent behavior is often a desideratum. In interactive com-
positions, listening strategies are highly dependent on the 
instrumentation and compositional idea and are usually 
designed for specific interaction scenarios, as opposed to 
the more generic listening modes of improvisation systems. 
A supervised learning algorithm, such as the algorithm 
described in this paper, enables the design of a listening 
behavior that is specific to a certain composition (or sever-
al interaction scenarios within it), allowing for a greater 
degree of freedom in designing sonic interactions. Further, 
technical advantages of the use of supervised learning in-
clude the possibility to integrate sound source separation 
and noise gating in the training process, thus avoiding 
manual configurations before or during the performance. 
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