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Abstract
Creative musical systems must be equipped with certain
intelligent abilities to understand fundamental aspects
of music, particularly in order to autonomously interact
with other creative agents. Key inference, a relatively
simple task for trained human experts, is one such intel-
ligent ability required to normalize and analyze melodic
compositions. We assess the accuracy of several tradi-
tional and machine learning approaches to the key and
key signature inference problems on a dataset of 480
melodies in MIDI format. We compare these accura-
cies with those of trained human musicians on the same
tasks. We evaluate the impact of including note dura-
tion and note repetition as learning features. We find
machine learning approaches outperform traditional key
inference methods. The highest accuracies (0.729 for
key inference and 0.896 for key signature inference)
were achieved using a 4-gram language model. Includ-
ing note duration improved the results of traditional ap-
proaches when inferring key, but had the opposite effect
for key signature inference. Our findings suggest that
the key of a melodic passage depends more heavily on
the sequence of the notes rather than their frequency or
distribution.

Introduction
A fundamental element of musical metacreation is the quest
to “[endow] machines with creative behavior” (Pasquier,
Eigenfeldt, and Bown 2012). Such behavior in humans
draws on a full spectrum of intelligent abilities (Colton,
Wiggins, and others 2012). Often there are overlaps in the
intelligent abilities that are required for different tasks. This
has been noted to be especially true of musical computa-
tional creative systems (Bodily and Ventura 2017).

An example of such an ability is musical key inference: the
ability to recognize the group of pitches or scale that form
the basis of a particular composition. This ability is a rela-
tively simple task for trained human musicians. The key or
tonic of a passage is used to transpose passages, motifs, and
progressions to a common tonal center in order to be able
to compare relationships and functions of pitched elements
across musical selections in different keys.

This work is licensed under the Creative Commons “Attribution
4.0 International” licence.

In computational systems data often comes pre-labeled
with the key. However, humans and music systems alike are
often placed in unsupervised training scenarios in which the
key is not labeled, but must rather be inferred. This inference
is critical, particularly for interactive agents which must in-
terpret and respond to other music agents. The key in which
systems improvise or compose is often not explicitly com-
municated by other performing agents but is rather inferred
from what is explicitly communicated (i.e., notes, chords,
etc.). In the quest for creating autonomous, interactive musi-
cal agents, to what extent can this skill of inferring musical
key be learned?

The key or tonality is a root pitch or tonic and modality
(e.g., major, minor, etc.) which forms the structural basis for
Western art music from Baroque to Romantic, along with
much modern popular music. This tonality provides a con-
text within which “the melodic and harmonic unfolding of a
composition takes place” (Vos and Van Geenen 1996). Even
the untrained ear appreciates the structure, tension, and res-
olution that tonality provides. Each key is associated with
a key signature representing the specific pitches that belong
to the scale represented by the key. There exists a many-to-
one relationship between keys and key signatures. For ex-
ample, each major key and its relative natural minor key
(whose root is three half steps lower) are associated with the
same key signature. Though music certainly exists with keys
whose modes are not strictly major or minor, we have as a
simplifying assumption chosen to focus solely on these two
common modes. Note that we are not interested in inferring
harmonic accompaniment (cf. (Groves 2013)), but rather in
determining the main key and key signature of a piece of
music.

Our interest in this problem arises as both a matter of ne-
cessity and as a philosophical inquiry. In efforts to apply ma-
chine learning to the generation of pop lead sheets, much
of the freely available training data in the pop genre exists
in MIDI format. Unlike more amenable formats (e.g., Mu-
sic XML), MIDI files do not typically contain information
about key or key signature. In order to train machine learn-
ing models on this data, inferring key and/or key signature is
useful for being able to “normalize” pitches into a common
key. Also for viewing MIDIs with music notation software
(e.g., MuseScore), key signature is an important notational
element.
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Besides these practical applications, the question is of
broader philosophical interest: how is it that a human musi-
cian can listen to a musical selection and infer its key? There
is a profound irony in the contrast between knowing how and
being able to explain how to infer the key of a musical se-
lection. Expert musicians routinely and accurately perform
this task. However the description for their methodology is
often inexact and derives from finding the key that “feels”
right, provides a sense of “finish”, or the key where the mu-
sic “lands”. One common supposition is that the solution in-
volves finding the key which minimizes the total number of
accidentals in a composition (Gorow 2011). Part of our pur-
pose is to test this hypothesis by comparing this approach
with several machine learning algorithms. Examining algo-
rithms that perform well on this task may help provide some
insight into how human musicians infer key.

We hypothesize that a monophonic melodic sequence
alone is sufficient in many cases to determine key. We have
chosen to focus on monophonic melodies, again, for both
practical and philosophical reasons. First, though composi-
tions have varying amounts of harmonic context, the mono-
phonic melody acts as a common denominator in all com-
positions in our dataset. Second, humans—in singing, hum-
ming, whistling, or playing a monophonic instrument—are
able to communicate and interpret music based on mono-
phonic melody. Picture, for example, singing a melody to a
musical friend that had never heard it. Without specifying
either the key or tonic, the friend is able to infer this in-
formation with some probability in order to make sense of
what (s)he is hearing (e.g., melody starts on the major third,
ends with the tonic, etc.). Thus the ability to infer tonality for
monophonic melodies represents an AI task if computers are
to effectively understand and communicate with humans.

We test our hypothesis on a dataset of 480 pop melodies
in MIDI format1. Data were selected to exclude melodies
with modulation or key changes. As a fundamental building
block of music knowledge and creativity, effective key in-
ference models stand to add increase autonomy in musical
metacreation systems.

Related Work
Several previous studies have examined key inference in var-
ious contexts, though to our knowledge ours is the first at-
tempt to do so using n-gram models with monophonic pop
melodies.

Krumhansl matches the relative frequencies and durations
with which tones are sounded (which she terms a tonal hi-
erarchy) of a composition against the known tonal hierar-
chies of each key (2001). This algorithm was applied to infer
keys for compositions from three classical composers: Bach,
Chopin, and Shostakovich.

The key-finding algorithm of Longuet-Higgins and Steed-
man successively eliminates keys based on the presence
or absence of the notes of the composition in each of the
major and minor scales (Longuet-Higgins and Steedman
1971). Holtzman (1977) infers key from the prevalence

1Metadata are available at http://popstar.cs.byu.
edu/metadata_for_midis.csv

of common key-defining intervals (e.g., triads, tonic-fifths,
tonic-thirds). Both algorithms were applied to Bach’s Well-
Tempered Clavier.

Hu and Saul use Latent Dirichlet Allocation (LDA)—a
statistical approach for discovering hidden topics in large
corpora of text—for key-finding, looking for common co-
occurrences of notes in music. Their model essentially treats
keys like topics. They then model compositions as a ran-
dom mixture of key-profiles, allowing them to track mod-
ulations (2009). Temperley interprets the traditional key-
profile model (proposed by Krumhansl (2001) and subse-
quently modified by Temperley (1999)) as a Bayesian prob-
abilistic model and discusses the implications of the con-
nection between these two models (2002). All applications
of the model are on the Kostka-Payne corpus, a collection
of textbook excerpts of tonal music. Vos and Van Geenen
present a parallel search key-finding algorithm for single-
voiced music. Notes are evaluated against both the scalar
and the chordal structures of each key. They demonstrate
the model’s effectiveness on Bach’s Well-Tempered Clavier
(1996). Zhu et al. present a method for key estimation in au-
dio pop and classical music (2005). Their method performs
marginally higher with pop music than with classical music.

Much recent work has been devoted to inferring key from
audio music. Shenoy et al. outline a rule-based algorithm for
finding key from audio musical signals using chroma based
frequency analysis and chord progression patterns (2004).
Mauch and Dixon infer chords and key simultaneously from
audio (2010). Chafe et al. extract symbolic music from audio
from which meter and key are inferred (in that order) (1982).
The key-recognizer assumes that rhythmic and melodic ac-
cent points are significant features for inferring key.

Temperley and Clercq (2013) address key-finding in rock
songs from harmonic, melodic, and combined harmonic-
melodic data. They compare a key-profile method (a norma-
tive distribution of scale-degrees) and a key-profile method
weighted by note durations for key-finding in monophonic
rock melodies. Their findings suggested that the weighted
method worked somewhat better. Their work provides an ex-
cellent survey of the work done on key-finding algorithms in
both pop and classical music, both from audio and sheet mu-
sic.

Methods

Data

We collected 480 melodies from 278 pop artists representing
music spanning several decades (see Figure 1). Songs were
compiled from several online MIDI databases and keys (in-
ferred from melody together with harmonic context) were
manually labeled by trained musicians. We were pleased to
find that every key was represented by at least two songs
(see Figure 1). Only songs with a single key were selected
for our experiments (no modulations). Melody notes were
isolated from the MIDI files. The melody for the entire song
was used for inference purposes.
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Figure 1: Key distribution of pop melodies. Every key is rep-
resented at least twice in the subset of melodies. In general
keys with fewer sharps and flats are more highly represented.

Table 1: Highly Represented Pop Artists
Artist # of songs

Beatles 28
Elvis Presley 13
Kiss 11
Madonna 8
Eagles 6
Aerosmith 6
Elton John 6
U2 6
Beach Boys 5
Michael Jackson 5
Pink Floyd 5
Bobby Vee 5
Adele 5
Queen 4
Kinks 4

Implementation
We compared the accuracy of 4 traditional and 5 machine
learning methods against the accuracy of trained musicians
(different than those employed for labeling ground truth)
on the tasks of inferring key and key signature for pop
melodies2. For each key signature there is a major and minor
key and thus key inference—which precludes key signature
inference—represents the more difficult of the two tasks. For
the machine learning methods, we used 10-fold cross valida-
tion for training and testing.

Minimize Accidentals by Count. This algorithm represents
the common theory that the best key is that which minimizes
the number of resulting accidentals.

Minimize Accidentals by Duration. Similar to the previous
method but finds the key which minimizes the total duration
of accidentals.

Root Mean Squared Error (RMSE) of Pitch Count Pro-
files. Similar to the method followed by Krumhansl (2001)
and others, we generated pitch profiles. Rather than generate
profiles for each major and minor key, we chose to generate
a single profile for all major keys and a second for all mi-
nor keys. This decision is based on the assumption that the
variation in pitch distribution varies very little (if at all) as
compared to the distributional variation between the major
and minor modes. Major and minor mode pitch profiles were
generated from the pitch counts in training instances trans-
posed to either the C major or A minor keys depending on
whether the instance was major or minor. A pitch profile is
created for each test instance, transposed into each of the 12
possible keys. Each transposed profile is compared to both
the major and minor generic pitch profiles using RMSE. The
transposed pitch profile and the major/minor pitch profile
with the minimum RMSE value are used to infer key and
modality.

RMSE of Pitch Duration Profiles. Similar to the previous
method but pitch profiles are generated from pitch durations
rather than mere counts (see Figure 2).

n-gram Models. An n-gram model calculates the probabil-
ity of the next token given some context window of length
n (Brown et al. 1992). These probabilities are learned from
the sequence of notes in the training instances and then used
to calculate the probability of note sequences in the test in-
stances. We trained n-gram models for values of n from 1 to
5, using Laplace smoothing and a pseudocount alpha value
of 1. For each value of n a single n-gram model was trained
for melodies in major keys and another for melodies in mi-
nor keys. Probabilities were normalized across both mod-
els. Test instances were than transposed and scored by each
trained model. The transposition and model which maxi-
mized the probability of the test instance determined the key
and modality.

In addition to the methods described above, we also re-
port accuracy from four other sources. First, the baseline ac-
curacy represents the approach of always guessing the most
common class. MIDI Annotations refers to the key signature
that was originally given in the MIDI file (if any was pro-

2source available at http://popstar.cs.byu.edu/
find_key.py
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Figure 2: Weighted Major/Minor Pitch Profiles. Profiles are
based on the duration of pitches in each of the major and mi-
nor modes. Profiles for major keys (blue) have been normal-
ized to C major and those for minor keys (red) to A minor.
Note that the A pitch is relatively more frequent for minor
keys (where it functions as the tonic) than for major keys
(where it functions as the 6th from the root). Likewise the
G pitch is relatively more frequent for major keys (where
it functions as the dominant) than for minor keys (where it
functions as the 7th from the root).

vided). We report the accuracy of a third-party MIDI-reader
called MuseScore. Insofar as MIDI is not a symbolic mu-
sic format, many files fail to include (accurate) information
about key or time signature, thus motivating the need to infer
this information from the notes themselves. This functional-
ity is built in with varying success to many programs which
render MIDI files as sheet music. MuseScore (version 2.0.3)
is one such program. Despite not having access to the Muse-
Score algorithm, we manually opened and examined each
song from the database in MuseScore to record the result of
their key inference algorithm. We include the accuracy of
MuseScore’s inferred key-signature in our results for com-
parison.

Lastly, we enlisted 15 trained musicians to complete the
same melodic key inference task. Each musician was af-
forded access to a keyboard and asked to listen to 20
melodies (the first of which was a control melody, God Rest
Ye Merry Gentlemen—all respondents answered the control
key correctly) without access to printed scores. In addition to
labeling the key and key signature for each melody, respon-
dents were asked to indicate how familiar they were with
the melody3. This was to control for bias that might arise as
a result of prior knowledge of the harmonic context of the
melody. We report the accuracies on the melodic key infer-
ence task as a function of the degree of familiarity as well as
an overall weighted average of these three scores.

3Survey results and self-reported musician training informa-
tion are available at http://popstar.cs.byu.edu/raw_
survey_results_name_key.csv

Table 2: Key Finding Accuracy for Pop Melodies
Method Key Key Signature

Baseline (C) 0.144 0.202
MIDI Annotations n/a 0.483
MuseScore n/a 0.746

Minimize Accidentals by Count 0.494 0.660
Minimize Accidentals by Duration 0.490 0.665
RMSE of Pitch Count Profiles 0.606 0.796
RMSE of Pitch Duration Profiles 0.613 0.765

Unigram model 0.629 0.815
Bigram model 0.654 0.883
Trigram model 0.679 0.883
4-gram model 0.729 0.896
5-gram model 0.700 0.885
Human (“I know this song”) 0.846 0.865
Human (“Sounds familiar”) 0.75 0.786
Human (“I don’t know this song”) 0.676 0.815

Human Average 0.719 0.822

Results
Results are shown in Table 2. We report accuracy both for
inferring the key and for inferring the key signature. Inas-
much as key signature is a more generic classification of key
(e.g., C major and A minor both have a key signature with
no flats or sharps), accuracy for key signature will always be
better than accuracy for key.

Discussion
Normalizing to a common key really only requires that we
identify the key signature for a composition without regard
for whether the key is the major key associated with the key
signature or its relative minor. We chose to model the ma-
jor and minor separately based on the hypothesis that the
melodies that each produces would be sufficiently differ-
ent to warrant creating individual profiles.The key inference
methods which minimize the frequency of accidentals show
the most dramatic improvement because these methods in-
herently fail to provide a way of distinguishing between a
major key and its relative minor.

We encountered several challenges, primarily centered
around assumptions made about the modalities present in
our dataset. Songs based on blues scales often include a flat
seven (which would suggest a key a fifth below the actual
tonic) or both the major and minor third. Hard rock songs
often exclude the third all-together, making it difficult to in-
fer whether a major or minor key signature is more accu-
rate. This finding supports the argument made by Temperley
and Clercq (2013) and others against the applicability of the
major/minor dichotomy to rock music. These confounding
influences are reflected in the confusion matrices for classi-
fications of songs in these genres (see Figure 3).

As regards the n-gram models, we note that the unigram
model is essentially equivalent to a pitch profile rendered as
an applied probability distribution, and thus it seems reason-
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Figure 3: Key Inference Confusion Matrix for 4-gram model. Much of the mis-classification confuses major and minor modes
for the same key. In cases such as hard rock which use open fifths and exclude the third completely the mode (i.e., major or
minor) is difficult to establish.

able that it should perform about on par with the RMSE of
Pitch Count Profile method.

We increased the value of n until we observed a decrease
in accuracy. As is typical of n-gram models, as n increases,
the model begins to essentially memorize the training data
at which point the differences between test and training sets
become as significant as the differences between the inferred
key classes.

It is important to note that although our best accuracy on
key-finding (.729) is significantly below the values reported
by studies mentioned in the related works, the task of in-
ferring key from melody is significantly more challenging
than inferring key from songs which include harmony. This
is evidenced by the relative accuracies of the algorithmic and
human performances on the melodic key inference problem.

It should also be considered that human listeners that are
familiar with a melody may more accurately infer key from
having familiarity with the harmony also. This is evidenced
in our results in the fact that the more familiar the human lis-

teners were with the song being played, the higher the accu-
racy on the key inference problem. Notably the same was not
necessarily true with the key signature inference, suggesting
that without knowledge of the context, humans may confuse
a major and relative minor for an unknown melody but still
infer the correct key signature. This is also evidenced by the
confusion matrix for the 4-gram model, shown in Figure 3.
We therefore express confidence in the reported accuracies
of these models.

It is of interest to note that the n-gram models generally
outperformed the human models on the key signature infer-
ence task. The 4- and 5-gram models outperformed the hu-
man respondents on the key inference task when the human
was otherwise unfamiliar with the song being played.

Our results suggest that considering pitch counts or dura-
tions is less effective than a model which considers the se-
quence of pitches. This agrees with our intuition insofar as
many pop songs spend the bulk of their duration progressing
through chords which are not the root and may not even be
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closely related to the root. Notions of resolution and find-
ing where the song “lands” inherently suggest that the con-
tour and progression of the notes matters more than their
frequency. The key is often most clearly defined at the be-
ginning and ends of musical phrases or the beginning and
end of the song itself. Whereas the method of counting note
frequencies fails to give higher weight to these defining re-
gions of the melodic passage, this information is embedded
within the probabilistic framework of n-gram models which
employ a special n-gram for the beginning and end of se-
quences.

We find the superior accuracy of n-gram models to the
MuseScore key-signature inference model to be particularly
promising inasmuch as it suggests that an n-gram model
might be used to improve the state of the art in industrial
MIDI-reading software.

As regards key inference from monophonic pop melodies,
we find that machine learning methods (n-gram language
models in particular) perform better than traditional key-
finding algorithms, though both improve upon baseline ac-
curacy. We also envision developing a framework for detect-
ing key modulations in pop melodies and using normalized
unlabeled melodic data for compositional analysis.

Conclusion
We have examined several solutions to the task of inferring
key and key signature in monophonic music sequences. We
found that for the particular case of monophonic sequences,
the 4-gram model performed best at both identifying key
and key signature. Endowing musical creative systems with
intelligent abilities like key inference increases their auton-
omy. As key is a fundamental concept to many genres of
music, this computational subconcept model can be modu-
larly reused to improve musical metacreation across several
domains.
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