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Abstract

In this paper, a latent variable model based on the
Variable Markov Oracle (VMO) is proposed to cap-
ture long-term temporal relationships between sequen-
tial observations. The proposed latent variable model is
a multi-level Hidden Markov Model (HMM) extracted
from the VMO, and is called the VMO-HMM. The mu-
sical importance of the proposed model is demonstrated
by modeling harmonic progressions of jazz music. The
VMO-HMM is able to reveal functional harmony re-
lations beyond chord labels, provides theoretic insight
into scale-chord relations and aids jazz harmony impro-
visation as a model of music meta-creation.

1 Introduction
No mater if it is a musicologist analyzing a jazz piece for
theoretical understanding or a musician comprehending
a jazz lead sheet for performances, it is undoubtedly that
there is always more to interpret than just following the
chord label sequence given on the lead sheet. For example,
a musician has to decide on the harmonic function of a
chord given its neighboring chords, then gathers hints
from extended chord labels and chooses an appropriate
yet interesting scale to perform over that chord. In that
sense, the same chord labels in a tune could serve different
harmonic functions given different surrounding chords and
lead to different note choice possibilities.

Most of the computational models using har-
monic content of music pieces view chord la-
bels as the latent variables (Sheh and Ellis 2003;
Eigenfeldt and Pasquier 2010) emitting surface mu-
sical events such as notes. Among various latent
variable models, HMM (Allan and Williams 2004;
Nakamura et al. 2015) is used extensively since it could
be used to model the sequential relationships between
successive chord labels. But in those models, each chord
label is modeled by one latent variable, thus it is difficult
for those models to distinguish among different harmonic
functions of the same chord labels. In (Gillick, Tang,
and Keller 2010), markov chains are learned to enhance
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the modeling of jazz melodies for style consistent music
generation but harmonic structures are not modeled.

Motivated by the above observation, a latent variable
model is proposed to model the relationships between obser-
vations and latent variables, but also to split latent variables
with different contexts having similar observations. Further-
more, from a musical standpoint, the interpretive nature of a
score description (such as chord labels in a lead sheet) and
its relationship to the realized music could be described by
the chord-scale theory and realized by the proposed latent
variable model.

1.1 Musical Theory of chord-scale improvisation
The problem of assigning pitch collections to chord sym-
bols is a fundamental problem in creative or improvisatory
interpretation of Jazz standards, figured bass, tablature
notations and most of the popular music chord notations.
Such partial chord specifications provide, to a different level
of specificity, an overall sense of harmonic structure that
the music composition should follow, leaving great amount
of liberty to the improviser or arranger to decide on the
actual realization of notes, voices and rhythms. In many
respects, composing a chord or harmonic label sequence is
a meta-composition process that has to be further completed
during the actual performance by musicians.

One musical theory that tries to address the question of
note choices given chord labels is the so called chord-scale
theory (Nettles and Graf 1997). A scale is a series of pitches
ordered by relative height or frequency, often limited
to a subset from the complete set of twelve chromatic
notes. An important aspect of a scale is its ordering of
notes that induces a sense of stepwise proximity that is
different from chromatic semitone ordering. Such pitch
organization introduces a sense of correct and false notes,
or notes that should be avoided when two or more tones
are played simultaneously. As the harmonic complexity
grew with the advent of chromaticism in classical and
jazz music of the 20th century, composers approached
this chromatic freedom in new ways that challenged the
notion of harmony and traditional scales, such as the
twelve-tone and serialist techniques. Other composers
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preserved more traditional relations between chords and
scales while significantly expanding the choices of chords,
and thus also constructing new and more complicated scales.

This evolution of musical language presents new op-
portunities in musical material constructions, with scales
mediating between the musical surface events1 and the
underlying harmonic structure. Such a scale-oriented
musical practice allows a more hierarchically structured
compositions where contextual relations may exist both
on the surface and on a latent harmonic level. Due to the
large variety and originality of establishing chord-scale
relations by different composers, this musical problem of
describing the relations between surface and structure has
been difficult to formalize. Some theories try to explain
the dynamics of moving between scales based on shared
subsets or efficient voice leading (Tymoczko 2004). For
example, the C diatonic scale can be linked to G diatonic
scale by “maximally smooth voice leading” since the two
scales share six common tones and moving from one scale
to another only requires a shift of a single pitch class by a
semitone.

The interesting point in considering chord relations
through scale changes and voice leading is that traditional
harmonic relations, such as dominant-tonic or other func-
tional harmony considerations, could be revisited, general-
ized, and even contradicted by following scale dynamics.
In VMO-HMM, a somewhat similar construction occurs
by clustering notes using temporal consideration, with la-
tent states serving the role of a mediating structure between
chord labels and the musical surface. This allows richer pos-
sibilities for rendering musical surface by alternative choices
from latent states that are richer than ordinary chord labels.
The system allows construction of altered chord progres-
sions and improvisation from a vocabulary of note selec-
tions (scales) by recopying relevant musical excerpts from
a database. These applications of random chord sequence
generation and improvisation for a given chord progressions
(query based improvisation) will be demonstrated in the pa-
per.

1.2 Context-Aware Hidden Markov Models
A Variable Markov Oracle (VMO)(Wang and Dubnov 2015;
Wang, Hsu, and Dubnov 2016) is a data structure based on
the Factor Oracle automaton that is capable of identifying
repeated subsequences within a multivariate time series
and was used for machine improvisation and multimedia
analysis. It is shown in (Wang and Dubnov 2015) that a
VMO is capable of clustering data points of a multivariate
time series based on their temporal relations, and tracking
the sequential transitions between these clusters. This
effectively makes VMO into a latent temporal model with
special behavior that is different from the common HMM
due to its variable length modeling property. In this paper,

1By musical surface events we mean a full specification of
sound events, represented as information that is complete enough
to allow a performable musical score.

a further study of how a VMO differs from a HMM is
presented. A visual demonstration of the context aware
aspect of VMO-HMM is depicted in figure 1. In the example
these observations are clustered into groups according to
different clustering methods. Figure 1 shows these results
by marking the cluster assignment with different colors.
Examples of time series modeled by VMO, HMM Gaussian
Mixture Models (HMM-GMM) and K-Means are shown.
It should be noted that the K-Means clusters observations
based on spatial positions only (in the feature space), and
that both VMO and HMM-GMM take the time trajectories
into account. In these examples it is evident that only
VMO is capable of distinguishing between observations
that are spatially but not sequentially (temporally) close
and assigning them to different clusters. After examining
the results it is clear that the establishment of clusters by
HMM-GMM and K-means is mainly determined by spatial
relationships between observations but not temporal rela-
tionships. Although the possibility of forming a latent model
was discussed in previous studies of VMO and Viterbi-like
algorithms were proposed for different applications, the
VMO data structure still has to be kept in order for the
algorithms to work. In this paper, the proposed latent model
is a compact version of the VMO data structure with a novel
statistical model and probabilistic interpretations.

In section 2, the VMO data structure and the method of
extracting a latent model using VMO are introduced. Jazz
music analysis is described in section 3. Novel music cre-
ation possibilities using VMO-HMM is proposed in section
4. Conclusion and discussions are elaborated in section 5.

2 Variable Markov Oracle as Latent Model
VMO was introduced in (Wang and Dubnov 2014) as an
extension to the Audio Oracle (AO) (Dubnov, Assayag,
and Cont 2007) having the capability of guided machine
improvisation. A VMO could be viewed as an on-line
clustering algorithm without the need to specify the number
of clusters. A VMO could also be considered as a data
structure that traces repeated sub-sequences in the latent
space. These two properties make VMO capable of both
modeling and generating multivariate time series. The
technical details of constructing a VMO could be found
in (Wang, Hsu, and Dubnov 2016) and are not repeated here.

The clustering property of a VMO is explained in detail in
(Wang, Hsu, and Dubnov 2016). The VMO was introduced
as a data structure that allowed symbolization and cluster-
ing, but without an underlying statistical model. In (Wang,
Hsu, and Dubnov 2016) an HMM analogy was made as the
first attempt to establish a statistical model for VMO. It took
into account the inference of emission probabilities from
observation and but did not model transition probabilities.
The current work is the most complete analogy or statistical
interpretation of the FO structure after IR optimization to an
HMM.

In short, a VMO records where and how long the longest
repeated suffixes happened for every time step in the time
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series, and stores them in two arrays, sfx and lrs respec-
tively. Since for each observation only one longest repeated
suffix is recorded, each observation in a time series is in-
dexed by VMO by assigning a label that is based on the
unique paths that are defined by suffix records. The labels
are stored in an array called latent. The suffix records are
called suffix links since they indicate connections between
observations if they share similar context (suffixes). Obser-
vations assigned the same label possess two properties that
are utilized in this paper: The first one is that the distances
between the observations connected by suffix links are be-
low a found threshold θ during the model selection process.
The second one is that they all share common suffixes in
the latent space. The first property sets the basis of model-
ing observations with a latent variable, the second property
provides a Markovian relationships between the latent vari-
ables.

2.1 VMO-HMM
The HMM-like model extracted from VMO is called the
VMO-HMM. To extract a VMO-HMM from a VMO, each
latent variable is represented by the centroid extracted from
the clustered observations. The choice of centroid could be
flexible, such as mean or median, depending on the applica-
tions. To extract the Markov transition probabilities from a
VMO, the lrs array is used. The lrs arrays contains the
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Figure 1: Two time series examples modeled by three dif-
ferent approaches. The gesture in the top row is a real world
3-D human skeletal joints gesture projected onto its first two
principle components. The bottom one is a synthetic spi-
ral sequence. The bottom one is a shape commonly tested
in manifold discovering and clustering. Three approaches
are used to model these time series. (From right to left) K-
Means, HMM-GMM and VMO. Each observation along the
time series is represented as a colored circle with its color
represents the label (hidden/latent state) that the observation
is assigned to. observations with the same color in the same
plot belong to the same label. The starting and ending po-
sitions of the two time series are annotated in the left most
column. Dashed lines connecting the data points represent
the time progression trajectories of each time series.

lengths of the longest repeated suffixes, thus it also provides
variable-length Markov transition information. To obtain
these information, a 3-D Markov transition tensor is created
instead of a 2-D Markov transition matrix. In algorithm 1, a
simple algorithm is provided here to show how the tensor is
extracted.

In algorithm 1, the counts of occurrences between consec-
utive latent variables are accumulated across the first dimen-
sion of S, with the index if the first dimensiton representing
the order of each Markov transition matrix. In following sec-
tions, musical analysis and creation utilizing both the latent
variables and the Markov tensors extracted from VMO will
be shown.

2.2 Model Selection
Constructing a VMO with different distance threshold θ
values will result in VMOs with different suffix and latent
variable structures. To select the one latent variable model
with the most informative variable-order Markov structure,
Information Rate (IR) is used as the criterion in model
selection between different structures generated by different
θ values. IR is an information theoretic measure capable of
measuring the information content of a time series (Dubnov
2006). IR is the mutual information between the present
and past observations, which is maximized when there is
a balance between variation and repetition in the latent
variable sequence.

The IR calculation for constructing a VMO is the same
as that for an AO (Dubnov, Assayag, and Cont 2011). Let
xN1 = {x1, x2, . . . , xN} denote time series x with N ob-
servations and H(x) the entropy of x. The definition of IR
is

IR(xn−1
1 , xn) = H(xn)−H(xn|xn−1

1 ). (1)

The value of IR could be approximated by replacing the en-
tropy terms in (1) with a complexity measure, C(x), associ-
ated with a compression algorithm. This complexity mea-

Algorithm 1 HMM tensor extraction
Require: An indexed VMO V , max variable length M

1: N ← the number of latent variables in V
2: Create a 3-D tensor S with dimensions {M,N,N}
3: T ← the number of data points in V
4: for t = 2 : T do
5: i← latentV [t− 1]
6: j ← latentV [t]
7: if lrsV [t] < 2 then
8: S[1, i, j] += 1
9: else

10: S[1 : lrsV [t]− 1, i, j] += 1
11: end if
12: end for
13: for m = 1 :M do
14: Normalize each row in S[m, :, :]
15: end for
16: return S
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Figure 2: IR values are shown on the vertical axis while θ
are on the horizontal axis. The solid blue curve shows the
relationship between IR and θ, and the dashed black line in-
dicates the chosen θ by locating the maximum IR value. In-
tuitively, C(xn) and C(xn|xn−1

1 exhibit an inverse relation-
ship with increasing θ, which leads to the IR curve showing
the quasi-concave function shape, and allows a global max-
imum be located.

sure is the number of bits used to compress xn indepen-
dently using the past observations xn−1

1 .

IR(xn−1
1 , xn) ≈ C(xn)− C(xn|xn−1

1 ). (2)

Compror, a lossless compression algorithm based on the FO
and the lengths of the longest repeated suffixes (lrs), is pro-
vided in (Lefebvre and Lecroq 2002). The detailed formula-
tion of combining Compror, the AO structure and IR is pro-
vided in (Dubnov, Assayag, and Cont 2011; Wang and Dub-
nov 2015). Basically, a reasonable range of θ values are used
to create multiple VMOs indexing the target signal, then the
one VMO that returns the highest IR value will be the one
VMO being used. The found θ value determines if an ob-
servation belongs to a cluster or not, while the actual label
assigned to a cluster is determined by the context (repeated
suffixes) in the latent variable space. In other words, obser-
vations that are spatially close could be assigned to different
clusters if their preceding observations (in time) came from
different contexts (repeated suffixes). A visualization of the
sum of IR values versus different θs is depicted in figure. 2.

3 Music Analysis
To exemplify the use of VMO-HMM on musical appli-
cations, a case study on analyzing Jazz music harmonic
progression is conducted. The piece being analyzed is
“Now’s the time” from Charlie Parker. The lead sheet
in MusicXML and an accompaniment recording in midi
are both available. To analyze the harmonic progression
automatically, the MIDI accompaniment is used as the input
to VMO. The lead sheet comes with the melody and human
annotated chord labels, and serves as the reference to the
VMO analysis.

To obtain harmonic information from MIDI, the MIDI
note events are first quantized to a piano roll matrix with
dimension {128, B}, where B stands for the number of bars
and the first dimension for MIDI pitch values. The values
in the piano roll matrix are velocities ranging between
[0, 127] with 0 representing a none event. There are several
choices for the note velocity aggregation (pooling) within
a bar, such as max, mean or median. For this case study,
max-pooling is used to aggregate the note velocities within

each bar along the time axis. Since the time signature
and tempo are given in the MIDI file, the bar locations
could easily be determined. After extracting the piano
roll matrix, it is further folded over octaves to form a
chroma-like matrix (midi-chromagram) with dimensions
{12, B}, with the first dimension represents the pitch class
{C,Db,D,Eb,E,F,Gb,G,Ab,A,Bb,B}. A normalization along
the time axis is done to normalize the values of each pitch
class to be between [0, 1]. A visualization of the final
midi-chromagram matrix is depicted in Figure 3.

To further strengthen the harmonic modeling, the 12-
dimension data points from the midi-chromagram are
projected onto the tonnetz space (Morris 1998) during the
construction of a VMO with the midi-chromagram. The
L − 2 norm distance is used during the construction. After
indexing the midi-chromagram with a VMO, the clusters
could be retrieved by grouping the frames in latent
having the same label. The clusters of chroma frames for
each clusters formed by VMO could be visualized as in
Figure 4.

Parts of the reference lead sheet with chord labels are
shown in figure 5. To examine how well a VMO-HMM
capture the relationships between observations and latent
variables. A qualitative comparison between the reference
chord labels and the clusters from the VMO-HMM shows
that the discovered clusters from the VMO-HMM do cap-
ture harmonic meanings and provide more information than
the reference chord labels from the lead sheet. Comparing
the centroid chroma (right column) in figure 4 with the
score in figure 5, cluster-0 and cluster-5 match with chord
labels F and F7, cluster-1 matches with B[7, cluster-2 with
Am/D7, cluster-3 with Gm, cluster-4 with C7 and cluster-6
with C7([9). Since cluster-7 only has only 1 frame in it
and paragraph considerations, its discussion will be skipped.
The unsupervised discovery with the VMO-HMM is nearly
perfect to the reference chord labels, which shows that
the VMO-HMM is capable of capturing the groupings of
midi-chroma frames into harmonically meaningful clusters.
Furthermore, an interesting split of the chord label [F,F7]
into cluster-0 and cluster-5 shows that the VMO-HMM
does capture a level deeper than what the surface chord
labels suggest. By examining where cluster-0 and cluster-5
are located in the score, the F7s associated with cluster-0
are undeniably the tonic with a flat 7 for which Major or
Mixolydian scales could be suitable. On the other hand, the
F7 associated with cluster-5 are passing chords between

10 20 30 40 50 60
Bars
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Bar-synchronized chroma - Now`s the time

Figure 3: The midi-chromagram extracted from the MIDI
accompaniment recording of the Jazz piece “Now‘s the
time”.
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C7. Like the one in measure 11. Though it is marked as
F7 in the lead sheet, in the accompaniment MIDI file it is
actually played as F13(]11), in which a Lydian Dominant
scale could be used.

Finally, the Markov transition matrices obtained from al-
gorithm 1 of different orders are shown in figure 6. The jth
entry in the ith row in each matrix represents the probabil-
ity from cluster-i transition to cluster-j. Matching the clus-
ters to the chord labels verifies that this piece follows a tight
[ii,V,I] progression of the chord sequence [D7, Gm,
C7] and [Gm, C7, F7]. By examining these Markov
transition matrices, it could be observed that the higher the
order, the sparser the Markov transition matrix is. As the
transition matrix gets sparser, the more definite the transi-
tion probabilities and fewer choices for possible next states.
The musical interpretation combining the observations of
the transition matrices and the clusters is that lower order
Markov transition matrices capture freer and more jazzy re-
lationships between chord clusters while higher order ones
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Figure 4: The clusters formed by the VMO on “Now‘s the
time”. The left matrix of each row is the collection of frames
from the midi-chromagram, the right single vector is the me-
dian centroid obtained by median-pooling along the time
axis within that cluster. The four pitches for each cluster rep-
resent the four most dominant pitches within that cluster by
velocity.

capture stricter harmonic tonal function relationships be-
tween chord clusters. For example, in the 1st-order transition
matrix, cluster-0, which matches to [F,F7], could transi-
tion to any of the other clusters except for cluster-5, whose
chroma content is similar to cluster-0. But as the order gets
higher, the possible clusters that cluster-0 could transition
to becomes fewer, and converges to cluster-1 and cluster-2,
which matches to B[7 and Am/D7 respectively. The con-
verged transitions between F7 to B[7 and Am/D7 are stan-
dard [I,IV] or [I, vi] movements in tonal theory.

4 Music Improvisation
The use of a VMO for improvisation and synthesis is al-
ready introduced in (Wang, Hsu, and Dubnov 2016). Previ-
ous works focused on guided improvisation and synthesis
using a VMO directly on audio signals. The guided music
generation was made possible by specifying a query to re-
combine the indexed audio signal based on the VMO suf-
fix structures. The limitation for previous works is that the
query and the target (VMO-indexed) signals have to use the
same alphabet, or in other words, the same feature or type of
signal. In this paper, a framework analyzing symbolic mu-
sic representation is proposed in section 3, thus allowed the
VMO to further expand its generative aspect to symbolic
representations. The most important advancement of using
symbolic representation with a VMO is that it allows the
user to specify a query signal that uses a different alphabet
from the target signal. To be more specific, the user could
now specify a chord label sequence as input to the improvi-
sation system. The system then translates the chord label se-

Figure 5: Partial score from the lead sheet of “Now‘s the
time” from bar 1 to 25.
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quence to pitch class profiles, which is essentially the same
representation as the midi-chromagram. Then the translated
sequence is used as the query to the VMO to generate a new
sequence in the same manner as proposed in (Wang, Hsu,
and Dubnov 2016).

4.1 Jazz chord sequences
Musicologists have tried to capture the essence of jazz chord
sequences by applying rules of classical harmony to under-
stand how basic harmonic structures have been transformed
in a jazz composition. One common technique of chord sub-
stitution rule can be formalized as a “rewriting rule” which
allows transforming a subsequence of chords into another
subsequence of chords that introduces diversity, without,
in principle, changing the harmonic function of the subse-
quence. Indeed, although jazz harmony could be considered
born from Classical harmony in an evolutionary viewpoint,
the harmonic functions of jazz chords seem to be much more
complex than those in Classical four-part chorals, because of
the underlying combinatorial “game” at play. For example,
in classical theory the chord of C major and F# chord are the
most “distant” in terms of their tonal context. In jazz how-
ever, a C(7) and F#(7) are closely related through sharing
a common tri-tone axis, and may be considered interchange-
able. Another common example of a distinction between
classical and jazz interpretation of chords is the functional
role of C and C7. While in classical harmony a C7 is consid-
ered an unstable dominant chord that is expected to resolve
to an F, in jazz, C and C7 are often considered equivalent.
These examples indicate that the harmonic rules which make
sense in classical harmony might not be strictly obeyed in
other tonal or modal musical styles. In a VMO-HMM model,
the relations between harmonic constructs, captured by the
latent variables, depend on the previous note aggregation
phase (the feature extraction part described in sections 3)
that is based on surface level note dynamics. Our experi-
ments show that there are two main transition types between
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Figure 6: Different Markov transition matrices extracted
from the VMO-HMM, from lower to higher order. The en-
try [i, j] in each matrix represents the probability from latent
variable i to j.

latent states suggesting different tonal relations and chord
transitions. One of them is the common jazz operation called
the ”enrichment” of chords, either viewed as 7, 9, 11 and 13
notes, or as sustained or color notes. These enrichments are
often used as special events, and understanding the context
of their application is important for allowing targeted and
effective use of such harmonic devices. In the analysis con-
ducted in section 3 it is found that the same musical nota-
tions (such as the F7 chord in “Now’s the time” example)
could be split between two clusters, where one (cluster-5) of
them contains a particularly more rich and embellished set
of notes than the other. Accordingly, when a VMO-HMM is
used to generate a new chord progression by a random walk
on the Markov structure between the latent variables, such
alterations, substitutions or enrichments may be controlled
as part of the musical meta-composition design.

4.2 Random Walks on VMO-HMM
Given different Markov transition matrices from different
lrs values, it is straight forward to sample latent variable
sequences treating each row in the transition matrix as a
multinomial distribution conditioned on its previous latent
variable. Continuing from the analysis example used in sec-
tion 3, given cluster-0 as the fixed initial latent variable, each
next latent variable is drawn randomly given the multino-
mial distribution conditioned on the current latent variable.
After the latent variable sequences are sampled, chord la-
bels are assigned to latent variables based on the clusters
shown in figure 4 in the same way as section 3. By exam-
ining the two sampled examples (figure 7), it could be ob-
served that the chord choices and temporal relations of the
lower order one are freer than the higher order one. If we
focus only on the root progression of these two example se-
quences, the 1st-order sequence contains progressions such
as [I,ii,VI], [I,vi,ii,V] and [IV,V,I], while
the 5th-order one contains mainly the [I,vi,ii,V,I,V]
progression. Based on these observations, the lower order
Markov model indeed captures a wider variety than the
higher order Markov model but lacks repetitive structures.
On the other hand, the higher order Markov model captures
more salient harmonic progressions in the music spanning
multiple bars. To render actual musical content from the
chord label sequences, one simple method is to randomly
select a bar containing the midi events from the cluster asso-
ciated to the latent variable. Due to space limitation the gen-
erated scores are not shown here and could be found in the
repository2. It should be noted that since the random sam-
pling is on the latent variable space, there is no one fixed
answer for the musical realization given the sampled latent
variable sequence. Reshuffling the original musical content
is just a convenient way, other generative methods based on
chord labels could also be used.

4.3 Query VMO-HMM by Chord Label Sequence
As mentioned in the beginning of this section, the other
advantage of using the VMO-HMM is that it provides a

2https://github.com/wangsix/markov_
improvisation
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| F7 | F7 | F7 | Gm |C7([9)| F7 | D7 | Gm |C7([9)| Bb7 | C7 |F7(]11)| C7 |
(a) 1st-order

| F7 | D7 | Gm | C7 |F7(]11)| C7 |F7(]11)| F7 | D7 | Gm | C7 |F7(]11)| C7 |
(b) 5th-order

Figure 7: Two sampled 12-bar chord label sequences of dif-
ferent orders Markov transition matrices from the VMO-
HMM on the piece “Now’s the time”. It should be noted
that the chord labels are inferred by human inspection on the
clusters shown in figure 4, not the chord labels from figure
5.

complete setting for ordinary HMM Viterbi recognition
algorithm (Sheh and Ellis 2003). A Viterbi algorithm using
VMO was proposed in (Wang and Dubnov 2015), where
the transition probabilities are assumed to be a uniform
distribution on the forward links from a frame to possible
next frames. In the VMO-HMM setting, the transition
probabilities between latent variables are learned from the
oracle structure based on the longest repeated suffixes of
each frame.

To use the Viterbi algorithm with a VMO-HMM for music
content generation, one can specify a chord label sequence
similar to the generated sequences in figure 7, then trans-
late the chord label sequence into a chroma vector sequence.
To translate chord labels to chroma vectors, one can sim-
ply use 12-dimensional binary vectors to represent 12-tone-
pitch classes. An example of such translation and compar-
ison to the actual chroma sequence is shown in figure 8.
The translated chroma sequence is then used as the obser-
vation in the Viterbi algorithm. To infer the latent variable
sequence generating the observations, the emission proba-
bility of an observation generated by a latent variable could
also be simplified as the cosine distance between the binary
pitch class vector (observation) and the centroid (mean or
median of the cluster) chroma vector normalized to be a
positive-valued vector which sums to 1. The Viterbi algo-
rithm decodes an observation sequence to a latent variable
sequence. The decoded latent variable sequence could then
be used to generate new musical materials as in section 4.2.
As a proof of concept using the aforementioned approach
generating musical contents with a user specified chord la-
bel sequence, the chord labels from the first 12 bars in the
reference MusicXml file of “Now‘s the time” is used as the
input chord label sequence to the Viterbi algorithm to see
if the decoded latent variable sequence matches the given
chord labels. The goal of this proof of concept is to see if
given a version of translation between the chord labels and
the pitch class profiles, how well could the Viterbi decoder
from a VMO-HMM work. The result of this initial attempt
works well since the Viterbi decoder is capable of finding the
exact latent variable sequence as the input chord label given
the reduced representation from a VMO-HMM. The testing
script can also be found in the repository provided above.
In figure 9, both the query and the decoded chord label se-
quences are shown. At bar 11, although the input label from

the lead sheet specifies F7, but the Viterbi algorithm with
the VMO-HMM extracted from the MIDI accompaniment
file is able to spell out F7(]11) given its different context
from earlier F7s. This observation confirms that the VMO-
HMM is capable of distinguishing similar chord given their
pitch classes if they have different context in the music.

5 Discussion and Conclusion
In this paper we presented a method of clustering collections
of notes according to similarities in their temporal context,
and learning multiple transition probabilities between the
clusters arranged into a Markov tensor indexed by the length
of longest repeated sequences. This latent construction with
variable memory property is called the VMO-HMM. A
musical theoretic interpretation of the latent states was
derived by observing the relations between cluster contents
and chord labels for a piece of jazz tune. It is suggested that
the latent states could be considered as a generalization of
the scale-chord theory where the same chord labels could
be ”split” into multiple possible choices of scale renderings.
Moreover, finding the optimal transition path between
latent states creates alternative harmonizations for a chord
sequence inputting into the VMO-HMM. This effectively
creates an enrichment of the harmonic language that is
learned idiomatically from musical MIDI recordings.

One other interesting interpretation of the proposed
model comes from a music cognition standpoint. A partic-
ularly intriguing aspect of the VMO-HMM Markov tensor
representation is that it explicitly models the relations
between Markov statistics and the lengths of musical
memories that were used to learn these statistics. The tensor
representation makes evident the dependency between
memory length (lrs) and the possibilities it offers for
continuation, which seems to suggest a correspondence
between anticipations and the type of memory involved
in musical practice. It was suggested long ago by Meyer
(Meyer 1956) that ”the same physical stimulus may call
forth different tendencies in different stylistic contexts ...
For example, a modal cadential progression will arouse
one set of expectations in the musical style of the sixteenth
century and quite another in the style of the nineteenth
century.”. Music cognition researchers (Huron 2006) take
this approach a step further by suggesting distinct cognitive
mechanisms, possibly even brain ones, for different types of

C
D
EF
G
A
B

First 12 chroma frames from "Now`s the time." 

F7 F7 F7 F7 B-7 B-7 F7 D7 Gm C7 F7 C7

C
D
EF
G
A
B

Translated chroma frames from chord labels

Figure 8: The actual midi-chromagram from the MIDI ac-
companiment compared to the translated query chromagram
(pitch classes) from chord labels in the lead sheet.
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| F7 | F7 | F7 | F7 | B[7 | B[7 | F7 | D7 | Gm | C7 | F7 | C7 |
(a) Query Chord Labels

| F7 | F7 | F7 | F7 | B[7 | B[7 | F7 | D7 | Gm | C7 | F7(]11) | C7 |
(b) Decoded Chord Labels

Figure 9: The query and decoded chord label sequences.
All the chord labels are matched besides bar 11, where the
F7 from the lead sheet is identified as F7(]11) given the
VMO-HMM.

musical memory responsible for veridical versus schematic
expectations. Veridical expectation is an expectation that
arises due to knowledge about a specific stimulus, such as
memorizing a musical piece. Schematic expectation arises
from general mental schema related to a certain style of
music. So the reason that a deceptive cadence [V-vi]
evokes a physiological response characteristic of surprise
even when the listener is familiar with a piece, is that the
fast (schematic) brain is being surprised by the “deception”
while the slow (veridical) brain is not. One hypothesis is
that separate mechanisms are required for learning veridical
expectations that require greater familiarity with the piece,
and schematic expectations that are much shorter and have
more possible continuations. We suggest that the use of lrs
dimension as a control parameter for the level of musical
confidence is distinct from surprisal measures that are based
on counts of future branching choices. Navigating between
more certain veridical memory paths versus less probable
sequences may reflect on differences in mental flexibility
and confidence of making musical choices, and could be a
valuable meta-creation parameter motivated by theories of
musical cognition.

In summary, the oracle structure has been used exten-
sively for machine improvisations. The VMO-HMM pro-
vides a more compact and abstract representation of the
oracle structure while keeping its variable-length Markov
properties. The tensor representation also presents opportu-
nities for consolidating different VMOs from different mu-
sic pieces into one unified model for a corpus. A few things
have to be taken care of for such unification, such as nor-
malizing the key for each song so that the functional har-
monic relationships between pitch classes are consistent and
matching clusters of chroma between different songs. Once
these steps are dealt with, a system that takes chord label se-
quences as input and output musical content that takes both
veridical and schematic aspects of music anticipations into
account using the VMO as the core engine could be devised.
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