

Using Recurrent Neural Networks to Judge Fitness in Musical Genetic

Algorithms

Peter Mitrano, Arthur Lockman, James Honicker, Scott Barton

Worcester Polytechnic Institute
mitranopeter@gmail.com, hello@rthr.me, jlhonicker@wpi.edu, sdbarton@wpi.edu

Abstract

We used a recurrent neural network as a fitness function for
a genetic algorithm to generate monophonic solos. The ge-
netic algorithm is based on GenJam as described in Biles
(1994). We conducted training sessions with human partici-
pants in order to compare and quantify some of the differ-
ences between human-feedback and RNN fitness functions.
We found that the RNNs can effectively play the role of hu-
man fitness feedback, but still suffer in many areas. Our re-
sults suggest that certain types of recurrent neural networks
can address the issues with human feedback, and thus should
be explored in future research.

There have been many approaches to automatic composition
that combine AI techniques. Often these systems contain a
generative component and an optimizing component. Tech-
niques for the generative component include genetic algo-
rithms (Biles, 1994; Loughran & O’Neill, 2016), feed-for-
ward neural networks (Bickerman, Bosley, Swire, & Keller,
2010), recurrent neural networks (“Google Magenta,” n.d.)),
and grammars (Gillick, Tang, & Keller, 2010; Keller &
Morrison, 2007). The optimizing component could be gra-
dient descent for neural network generators (Geoffrey E.
Hinton, D. E. Rumlhart, & Ronald J. Williams, 1988), more
genetic algorithms (Loughran & O’Neill, 2016), human in-
put (Biles, 1994), or variable neighborhood search (Herre-
mans & Chew, 2016).

Genetic Algorithms
Of the aforementioned approaches, genetic algorithms (GA)
have shown promising results and thus have been used in a
number of automatic composition systems over the past 25
years (Gibson & Byrne, 1991). Genetic algorithms consist
of a population of solutions to a problem and a fitness func-

tion that is used to rank those solutions. Solutions are itera-
tively ranked, crossed with each other to produce a new gen-
eration, and then mutated. As this process is repeated, the
fitness of the solutions in the population increases. An im-
portant aspect of designing a genetic algorithm is choosing
a representation for the genotype and phenotype. Genotype
refers to how the data is encoded in the computation space
so that it can be manipulated in mutation and crossover, and
is usually a simple list of numbers. The phenotype is the ex-
pression or decoding of that data in a form that is relevant to
the solution-finding process, and in this case is the music
that the fitness function receives. Choosing how the geno-
type is decoded to the phenotype affects what musical fac-
tors are fixed and what factors are learned, and it also affects
the size of the solution space that is being optimized. Part of
the appeal of genetic algorithms for generating music is that
they can have a simple genotype that maps to the output mu-
sic, rather than directly representing all the parametric com-
plexities that the music may contain. Additionally, genetic
algorithms can be endowed with domain specific infor-
mation about musically relevant attributes and relationships
in the form of mutation, crossover, and selection methods.
Further, they allow the amount of randomness in the output
to be adjusted in the form a mutation rate. In a musical ge-
netic algorithm, these mutations often result in meaningful
manipulations, such as repeating a section, reorganizing a
chord, or reversing a sequence of notes.

Musical Fitness Functions
The fitness function is an important part of a musical genetic
algorithm, as it determines what solutions are deemed
“good”. The problem is that in music, “good” solutions are
subjective and highly dependent on context. The extent to
which a particular sequence of pitches will work is not in-
herent either in the pitches themselves or their organization;
it is also a function of harmonic context, rhythmic configu-

ration, the pitches that precede and follow it, expressive tim-
ing, dynamic contour, and timbre. Further complicating the
issue is that perception of musical organizations is affected
by interactions between musical parameters. In some cases,
the rhythm of a musical gesture will dictate perceptual
grouping and in others it may be the pitch or timbral se-
quence. As humans, such perceptual organization is primary
to our aesthetic evaluation of musical gestures. One must
also consider how to allow the output to feel creative, as op-
posed to a satisfactory regurgitation of rule-based conven-
tions. Even when a good fitness function is written, it likely
cannot be reused if the kind of desired musical output
changes. For instance, a fitness function that knows the rules
of baroque four-part harmonic voice leading would likely
have little overlap with a fitness function that judges the
quality of a Dubstep Wobble Bass. Designing a function that
captures the ambiguities and complexities of such processes
and requirements would be exorbitantly difficult, if possible
at all.
 One way to address the aforementioned issue is to use hu-
man feedback as the fitness function. In these interactive ge-
netic algorithms (IGA), a human evaluates each chromo-
some that is produced. Interactive genetic algorithms excel
because they incorporate human aesthetic preferences,
which influence the output of the system in the direction of
more pleasing results. The drawback of this process is the
tedious effort on the part of the human trainer. An additional
concern is the consistency of human feedback, which may
vary because of a number of factors including attention, rep-
etition, sequence effect, context, and fatigue. The ways in
which the consistency of human feedback affects fitness in
interactive genetic algorithms needs to be further clarified.
 To avoid the tedious and inconsistent results of a human-
feedback fitness function, one could derive an automatic fit-
ness function by learning from existing music. The hope is
that a learned function will still follow conventions, but
without being restricted to the rules a programmer can cre-
ate. One such data-driven fitness function is a recurrent neu-
ral network (RNN). In a feedforward neural network, the
output is a function of only the most recent input. If one note
was passed in, the next note would be predicted based only
on that note, similar to a 1st order markov chain. In an RNN,
the output is function of all previous inputs: an infinite order
markov chain. One challenge of automatic fitness functions
for music is how to encode the input in a machine readable
format. For RNNs, the input is typically a representation of
a sequence of pitches and durations. In the case of a MIDI
representation, the sequence is encoded as note on, note off
and velocity events that are fed into the RNN. Each event
could also be accompanied by human-labeled information,
such as chord progression, which is needed to predict the
next event. In most cases, RNNs have been used in music to
generate music, rather than to judge it (Chen & Miikku-

lainen, 2001; “Google Magenta,” n.d.). Specifically, musi-
cal RNNs often end with a softmax layer with one class for
each possible note. Softmax is a function that converts the
output of the previous layers into a probability distribution
over the possible notes. The node in the output of the soft-
max layer with the highest activation represents the next pre-
dicted note. In this way, a musical sequence can be produced
given a starting note or set of starting notes. This architec-
ture makes it straightforward to generate monophonic mel-
odies.
 Neural networks have been combined with genetic algo-
rithms in a number of ways. Biles, Peter, and Loggi (1996)
used a small feed forward neural network to learn the fitness
of single measures and phrases given only the genotype (in-
dexes), not the phenotype (pitches). Genetic algorithms
have been paired with RNNs to maximize a rule-based fit-
ness function (Chen & Miikkulainen, 2001). In this ap-
proach the RNN is used as generator of music, and the ge-
netic algorithm evolves the best RNN according to a hand-
crafted fitness function. RNNs have also been used as a fit-
ness function where fitness ratings were based on similarity
to two melodies. In this case, the RNN acted as a distance
function between the generated music and the two example
pieces (Sheikholharam & Teshnehlab, 2008). Our approach
uses an RNN as a fitness function, where the RNN was
trained on a large music corpus with the goal of judging mu-
sical fitness in a broader sense.

Current Study

Writing a fitness function for a genetic algorithm is difficult,
and using human feedback as the fitness function is tedious
and potentially inconsistent. Given the features of RNNs
and their successful combination with genetic algorithms in
other scenarios, we wonder if an RNN used to give fitness
feedback to a genetic algorithm music generator would yield
easier and more promising results. Our project thus seeks to
achieve the following objectives:

1. Use an RNN to provide fitness feedback to a ge-
netic algorithm music generator

2. Compare human-feedback fitness functions to
RNN fitness functions to determine the strengths
and weaknesses of each

Design

Genetic Algorithm for Music Generation
The genetic algorithm in our system is based on the descrip-
tion of GenJam provided in Biles (1994), but has a number
of key differences. We used population sizes on the order of
256 measures and 256 phrases, as opposed to 32 and 48 as

used in GenJam. Larger populations create more opportuni-
ties for a high-fitness gene to be found. We also included an
additional random-bit mutation operation, which unlike the
other mutations does not attempt to preserve musical quali-
ties or manipulate them according to conventions of har-
mony and rhythm. This can be tolerated by the RNN, but
was avoided in human training to avoid subjecting the lis-
tener to the results of mutations that are unlikely to improve
the gene. Another difference in our system is that fitness is
assigned to measures and phrases at each generation, not ac-
cumulated over generations. We accumulated human feed-
back over each generation in order to smooth variable re-
sults. We assigned fitness to the log-likelihood output of the
RNN. These changes were made possible because we aren’t
limited by the patience or concentration of human evalua-
tors.
 The parameters in our system include smallest rhythmic
interval, allowed pitches, measure population size, phrase
population size, number of measures per phrase, and initial
note distribution. Velocity was set to a constant value during
both manual and RNN training as its inclusion presents
complexities in both training conditions.

Populations and Mutations
Our genetic algorithm is composed of two populations: the
phrase population and the measure population. The ra-
tionale behind this is to make it easier for patterns and repe-
tition to arise at various levels within a grouping hierarchy.
Another benefit of two populations is that it permits longer
sections of music to be evaluated for fitness by the RNN.
 Each individual in the measure population contains
pitches, rests, and sustains of the previous note or rest. Sus-
tains are used to create notes that are held longer than the
one gene. This has the advantage of keeping measure genes
all the same length. Phrases are a sequence of measures, and
the phrase genes are indexes to a measure in the measure
population. The number of genes at the phrase level can vary
according to the chord progression being used. For example,
if the chord progression spans eight measures, each phrase
gene would contain eight numbers that correspond to those
measures. Each of these measures would, in a 4/4 time sig-
nature with one gene equaling one 8th note duration, contain
eight genes. This gene duration is the smallest rhythmic in-
terval, and is another parameter of our system (16th notes
are the smallest intervals used in our experiments). Each
measure-gene ranges from 0 to 15, so as to fit neatly within
two bytes. 0 indicates a rest, 15 indicates a sustain of the
previous rest or note, and 1-14 indicates a new note. The
numbers 1-14 are an index into the list of allowed pitches
for the current chord. These lists of allowed pitches control
how genes in the measure genotype are mapped to actual
pitches. For instance, if the current chord is a C major 7, the
allowable pitches would be C D E G A B, which would cre-
ate the allowed pitch map {C3 = index 1 … D5 = index 14}.

Because we only allow two bytes per gene, the lists of al-
lowed pitches for a chord can only contain 14 pitches. More
bytes could be allocated and more pitches allowed, but we
chose to follow the sizes used in GenJam to reduce the num-
ber of variables being manipulated. We use the same lists of
allowed pitches as detailed in Biles (1994).

Like GenJam, we initialize only the phrase population
uniformly randomly. For the measure population, the initial-
ize with a fixed probability distribution of 20% rests, 20%
sustains, and 60% notes, which was copied from GenJam.
Unlike GenJam however, the measure genes that are notes
(1-14) are not uniformly random. The first note gene in a
measure is constructed by picking a number uniformly at
random from 1 to 14. For all subsequent notes in that meas-
ure, a note is selected uniformly randomly from a range of
plus or minus three of the previous notes. For example, if a
sequence started 4, 15, 0, 15, then the next note would be
randomly selected from 4 ± 3. This initialization method re-
duces the number of large intervals between notes. This is
desirable because large intervals are less common in typical
tonal melodic sequences and thus are judged with lower fit-
ness by our RNNs, so reducing these in the initial population
yields faster convergence. It also yields faster convergence
for human training for the same reason. The mutation oper-
ations include sorting, shuffling, and transposing. Phrase
mutations are primarily based on fitness so that either better
measures or revived unused measures perpetuate. For a de-
tailed analysis of the mutations used, our code (linked in the
results section) will be the best resource, along with the de-
scriptions provided by Biles (1994).

Recurrent Neural Networks
We experimented with three different RNNs that are avail-
able in Google's open source Magenta project (“Google
Magenta,” n.d.): Improv RNN, Attention RNN, and Look-
back RNN. The Improv RNN model generates melodies
that are conditioned on a chord progression (Simon, 2017).
The other two do not incorporate accompanying chords
(see Waite, 2016). All of the models used were pre-trained
by Google on datasets containing thousands of songs.
Training our own model on small but specific dataset, such
as the Weimar Jazz DB, did not improve our results with
Attention RNN or Lookback RNN. Furthermore, training
Improv RNN requires chord labels, which were unavailable
in a consistent format. We used two hidden layers with
modified LSTM cells, 64 nodes per each hidden layer, and
a 128-class softmax. While these networks are designed for
music generation, we used them for computing fitness. To
do this, we computed the log-likelihood of a given se-
quence generated by the genetic algorithm. In other words,
we determined the forward pass of each note on/off/sustain
event sequentially, and the network returned a measure of
how likely it was that the event sequence came from the

distribution of its training data. This was used as the fitness
value for the sequence. While the magenta team has not re-
leased the dataset used to train these networks, we know
they consist of monophonic melodies with chord progres-
sions in the case of Improv RNN.

Human Fitness Function
In order to evaluate the RNN as a fitness function, we com-
pared it to one based on human-feedback. The latter is how
the original GenJam was trained, and we reproduced those
results here. Two of the authors participated in human train-
ing sessions. In each session, the participant listened to the
output of each generation accompanied by backing chords
and a monophonic bass line. The tempo of musical selec-
tions was between 100 and 160 bpm. The participant evalu-
ated musical statements by pressing ‘g’ (“good”) or ‘b’
(“bad”) on a computer keyboard whenever so inspired.
When ‘g’ was pressed, the phrase and measure that was
playing three beats ago had fitness increased by 1; when ‘b’
is pressed, 1 was subtracted.

Because an evaluative response does not occur simulta-
neously with the presentation of a stimulus, a delay param-
eter needs to be introduced to account for the amount of time
it takes a participant to register his or her feedback. We used
a delay of three beats in accordance with Biles (1994), but
note that the time between stimulus presentation, percep-
tion, evaluation and response is complex, variable and con-
text-dependent. Determining an accurate measure of feed-
back delay was outside the scope of this particular study,
and thus presents a limitation of our results.

Results

Evaluating the RNN Fitness Function
We used three inputs to evaluate the RNN as a fitness func-
tion: random notes, the tonic played repeatedly, and profes-
sional jazz solos. Random notes consisted of randomly se-
lected pitches from the set {MIDI notes 0-127} and ran-
domly selected rhythmic durations from the set {16th, 8th,
quarter, half, whole}; all notes had a constant velocity. We
used the Weimar Jazz Database as a source of professional
jazz solos. We used 7 sequences of each input type with
lengths between 20 and 400 notes. Only 7 sequences were
tested because labeling jazz solos was time consuming. The
lengths of the jazz solos were fixed, but the random and
tonic sequences were given random lengths. Generating this
graph multiple times over difference random samples pro-
duced consistent results. Each input sequence was run
through each RNN and the resultant fitness was divided by
sequence length. This division compensates for the fact the
RNN accumulated log-likelihood with respect to length, so

dividing by length makes sequences more comparable de-
spite varying in length.

The random and tonic inputs produced lower fitness scores
than the professional input (see Figure 1). This suggests that
Improv RNN can indicate fitness in a basic, musically appro-
priate way. Conversely, both Lookback RNN and Attention
RNN preferred the random to the professional input, which
indicates they are not appropriate to use as fitness functions.

 We also evaluated how the Improv RNN ranked pitches
for a given harmonic context (see Figure 2 and Figure 3).
We created a string of four measures of notes of various du-
rations at the pitch we wanted to test, and labeled them as
being accompanied by a C major 7 chord (C3, E3, G3, and
B4). For example, the blue dot in the upper left corner of
Figure 2 shows the fitness of a sequence of 16 quarter notes
of the pitch C3, labeled with C Major 7 as the accompanying
chord. With the current chord labeled as C Major 7, the high-
est fitness pitches at the quarter note duration were G fol-
lowed by E and the lowest fitness pitches were C# and F#.
When we compare this to models of pitch hierarchies in hu-
man perception, we see similar distinctions between compo-
nents of the major triad, the other members of the diatonic
scale, and the non-diatonic chromatic pitch classes
(Krumhansl, 1979). These results show that although the
conventions of functional tonal harmony are not explicitly
encoded in Improv RNN, it is able to recognize basic triadic
and diatonic hierarchical weightings that correspond to
those conventions. This is also true for 8th notes, but not for
16th notes, indicating that harmonic interpretation depends
on rhythmic context.

Figure 1 Improv RNN prefers professional over the tonic and
random inputs

 Looking at the fitness as a function of the length of the
random note sequence provides another means of compari-
son (see Figure 4). The results show that the longer the se-
quence provided to the RNN, the more consistent its fitness.

 The Improv RNN is able to converge to a stable total fit-
ness for each population within 30 generations (see Figure
5). A major flaw of the Improv RNN is that because it prefers
certain notes, convergence in practice means only those
notes will be played. Generations after 14 become incredi-
bly repetitive, and by generation 40 the population consists
almost entirely of whole notes on the highest fitness pitches.
Mitigating such behavior is left for future work.

Evaluating the Human Fitness Function
We now present analysis of human fitness feedback given
during training. We found that roughly 10 generations with
32 measures and 48 phrases are needed before the first
"golden" generation appears. This matches the results re
ported by Biles (1994). The analysis in Table 1 shows the
feedback that was gathered over one training session. In this
instance, 17 measures out of the 32 total were given feed-
back. Note that not all measures in the population receive
fitness feedback all the time, which makes convergence
slower.

Count Min Max Mean Std. dv. Mode

1 -1 -1 -1 0 -1

12 -6 4 -1.66 4.55 1

4 1 3 2.5 0.86 3

7 1 4 2.71 1.48 1

6 1 3 2 1 1

1 1 1 1 0 1

2 -1 1 0 1 1

3 1 2 1.66 0.47 2

7 -1 5 3.57 2.32 5

1 1 1 1 0 1

2 -1 -1 -1 0 -1

6 -2 2 0 1.73 1

7 -5 2 -3 3.16 2

35 -5 8 2.71 4.28 3

10 -2 6 3 3.68 6

4 -2 -1 -1.5 0.5 -1

14 -1 4 1.42 1.87 4

Table 1 Feedback to measures over one training session. Count
represents how many times a measure received feedback. Min
through mode represent statistics about the feedback scores.

Figure 2 Fitness of pitches in the harmonic context of a C Major
7 chord (C3, E3, G3, B3).

Figure 3 Fitness of pitches in the harmonic context of a C Major
7 chord (C3, E3, G3, B3). This is a continuation of Figure 2.

Figure 4 Increasing length gives more consistent fitness

Figure 5 Sum of fitness of all measures in the measure population
over time in Improv RNN training process.

Fi
tn

es
s

Fi
tn

es
s

This is because fitness is unchanged if neither ‘g’ nor ‘b’
is pressed by the human trainer. This is in contrast the
RNNs, which provide feedback at every iteration. Each row
in Table 1 represents one of those 17 measures. The results
show that in many cases, feedback for a particular measure
is inconsistent. For example, the second row shows that one
measure was given feedback 12 times. At one point, it was
given a score of -6, and another time 4.
 This could mean, for example, that the measure got 6
"bad" one time (-6), and another time got 5 "good" and 1
"bad" another time (5 - 1 = 4). There are many potential ex-
planations for this inconsistency. The value of a particular
measure is not inherent, instead, it depends on the music that
preceded it, which is part of its context. Different anteced-
ents will affect the perceived value of the same consequent.
Attention is another potential factor: in one instance the par-
ticipant may focus on rhythm while in another instance (of
the same measure) she may focus on melodic contour. Par-
ticipants may be excited and interested at some times and
tired or bored at others, which may influence the fitness rat-
ing given to the measure. Our findings support the notion
that human listeners do not have a fixed criterion for fitness
like the RNN does. The inconsistency of human feedback
makes convergence to a result with high fitness difficult.
This is not to say that human training doesn't work, but ra-
ther that it reaches a point where the piece stops improving.

Tuning of Parameters
The most important of the aforementioned parameters are
smallest rhythmic interval and allowed pitches. The other
parameters, measure population size, phrase population
size, number of measures per phrase, and initial note distri-
bution also influenced results.

Smallest rhythmic interval defines the resolution of one
gene in the measure-level population. We found that 16th
note durations at tempos above 120 bpm were difficult to
judge in the human-feedback condition. This was especially
true for the first few generations, which contained large in-
tervals between pitches and non-repeating rhythms. We
found that training was easier with a minimum rhythmic in-
terval of an 8th note. Conversely, the RNN does not have
the same kind of perceptual limitations when it comes to
processing rapid information. Thus, the choice of the small-
est rhythmic interval is based on aesthetic preference, and
on the training data used when training the RNN.

Lists of allowed pitches define which pitches are permit-
ted to be played over a given chord. Recall that numbers in
the measure-level population are not MIDI notes them-
selves, but are numbers from 1 to 15 representing an index
of the list of allowed notes in a chord. One might let the al-
lowed pitches to include all of those in a desired key. How-
ever, one can further allow or restrict the lists of allowed
pitches according to aesthetic preferences.

In practice, the size of a population is affected by the
training condition. In the human-feedback condition, we
found that evaluating more than 200 measures in a genera-
tion was tedious. Computers have no such constraints, and
therefore can entertain larger initial measure and phrase
populations, which lead to higher eventual fitness.

The number of measures per phrase is mostly a function
of the chord progression. While a chord progression cannot
last longer than a phrase, one can make the number of
measures per phrase longer than one's chord progression.
Longer phrases thus allow different configurations of
measures and chord progressions, which allows the RNN to
evaluate and influence relationships between groups on
higher hierarchical levels.

Analysis of the Resulting Populations
We analyzed one Improv RNN training process to determine
which note durations, pitches, and measures out of a popu-
lation it prefers. For this analysis, we used the Improv RNN
for 14 generations, which took about 112 minutes. This
length was chosen because it was close to the amount of time
used by the human trainers.

First, we looked at preferred note durations. We counted
the occurrence of each duration type in each generation and
plotted them against each other. The result is shown in Fig-
ure 6. The network preferred 8th notes, since they are the
most prevalent over the training process and survived more
than any other into the final population. However, the total
number of notes played decreases and the occurrence of
longer notes increases over time.

 Second, we analyzed the algorithm's usage of different
pitches. The output of the algorithm can either be a rest (0),
a note (1-14), or a sustain (15). Usage of each is counted and
plotted for each generation (see Figure 7). Over time, the
training process converged towards fewer rests and more
sustained notes, and the latter became increasingly prevalent
as compared with new notes. Also notable is the increase in
notes 8 and 10, which in all of our lists of allowed pitches

Figure 6 Stacked graph of note duration used when evolving
with Improv RNN

map to the root and third of the chord one octave up. This
reinforces our finding that Improv RNN prefers pitches that
conventionally have harmonic weight.
 Finally, we analyzed the measures used in each phrase of
the algorithm output. Figure 8 shows a stacked plot of the
prevalence of each measure in each of the algorithm's gen-
erations. While the figure doesn’t represent the specific con-
tent of measures, it does show that most measures get rela-
tively equitable usage in the population. This is surprising
because during the human fitness training, some measures
dominated the population (see). One explanation would be
that the RNN is trained on a large and diverse corpus.

Conclusion and Future Work

We show that an RNN designed for music generation can be
used as a fitness function for a genetic algorithm that pro-
duces monophonic solos over a given chord progression.
We conducted training sessions with human participants in
order to compare and quantify some of the differences be-
tween human-feedback and RNN fitness functions. We
found that the inconsistency of human feedback creates
problems in regard to the convergence of solutions. Addi-
tionally, the process of manually providing feedback is tedi-
ous. Our results suggest that certain types of recurrent neural
networks can address these issues, and thus should be ex-
plored in future research. Training Improv RNN on a large,
well labeled, dataset of a specific genre or composer would
be useful in exploring whether RNNs can fit closely to data
with less variation, such as four-part harmony. Also of in-
terest is how manipulation of the aforementioned parame-
ters, such as length and allowed pitches, affects the musical
characteristics of results. More rigorous experiments com-
paring human evaluations and RNN evaluations will pro-
vide useful feedback for designing better RNNs. Research
that illuminates how these characteristics are perceived by
human listeners will enable more thoughtful revisions of the
algorithm. An interdisciplinary approach that draws from
computer science, cognitive psychology and music theory
will be helpful in this effort.

Links

You can listen to raw outputs as well as compositions made
using http://petermitrano.github.io/plonky/.

The full source code for replicating our results and analysis
is available at https://github.com/Arthurlockman/plonky.

Acknowledgements

Thanks to Al Biles for the inspiration for the project, and to
the Magenta team at Google for making their incredible
work open-source.

References

Bickerman, G., Bosley, S., Swire, P., & Keller, R. M. (2010).
Learning to Create Jazz Melodies Using Deep Belief Nets. Inter-
national Conference on Computational Creativity, 228–237.

Biles, J. A. (1994). GenJam: A Genetic Algorithm for Generating
Jazz Solos. International Computer Music Conference, 131–137.

Chen, C.-C. J., & Miikkulainen, R. (2001). Creating Melodies with
Evolving Recurrent Neural Networks. In Proceedings of the 2001
International Joint Conference on Neural Networks.

Figure 7 Stacked graph of note type usage for each measure in the
population for the Improv RNN training process

Figure 8 Stacked graph of measures used in the phrase popula-
tion over generations for the Improv RNN training process

Figure 9 Stacked graph of measures used in the phrase popula-
tion over generations for the human training process

Geoffrey E. Hinton, D. E. Rumlhart, & Ronald J. Williams. (1988).
Learning representations by back-propagating errors. Cognitive
Modeling, 5(3).

Gibson, P. M., & Byrne, J. A. (1991). NEUROGEN, musical com-
position using genetic algorithms and cooperating neural networks.
In 1991 Second International Conference on Artificial Neural Net-
works (pp. 309–313).

Gillick, J., Tang, K., & Keller, R. M. (2010). Machine Learning of
Jazz Grammers. Computer Music Journal, 56–66.

Google Magenta. (n.d.). Retrieved March 9, 2017, from https://ma-
genta.tensorflow.org/

Herremans, D., & Chew, E. (2016). MorpheuS: Automatic music
generation with recurrent pattern constraints and tension profiles.
In IEEE TENCON. Singapore: IEEE.

Keller, R. M., & Morrison, D. R. (2007). A Grammatical Approach
to Automatic Improvisation. Proceedings of the Fourth Sound and
Music Computing Conference.

Krumhansl, C.L. (1979). The psychological representation of mu-
sical pitch in a tonal context. Cognitive Psychology, 11, 346-374.

Loughran, R., & O’Neill, M. (2016). The Popular Critic: Evolving
Melodies with Popularity Driven Fitness. The Fourth International
Workshop on Musical Metacreation.

Sheikholharam, P., & Teshnehlab, M. (2008). Music Composition
Using Combination of Genetic Algorithms and Recurrent Neural
Networks. In 2008 Eighth International Conference on Hybrid In-
telligent Systems (pp. 350–355).
https://doi.org/10.1109/HIS.2008.46

Simon, I. (2017, January 30). improv_rnn README.md. Re-
trieved March 9, 2017, from https://github.com/tensorflow/ma-
genta/blob/master/magenta/models/improv_rnn/README.md

Waite, E. (2016, July 15). Generating Long-Term Structure in
Songs and Stories. Retrieved March 9, 2017, from https://ma-
genta.tensorflow.org/2016/07/15/lookback-rnn-attention-rnn/

