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Abstract 

We used a recurrent neural network as a fitness function for 
a genetic algorithm to generate monophonic solos. The ge-
netic algorithm is based on GenJam as described in Biles 
(1994). We conducted training sessions with human partici-
pants in order to compare and quantify some of the differ-
ences between human-feedback and RNN fitness functions. 
We found that the RNNs can effectively play the role of hu-
man fitness feedback, but still suffer in many areas. Our re-
sults suggest that certain types of recurrent neural networks 
can address the issues with human feedback, and thus should 
be explored in future research. 

 
 
There have been many approaches to automatic composition 
that combine AI techniques. Often these systems contain a 
generative component and an optimizing component. Tech-
niques for the generative component include genetic algo-
rithms (Biles, 1994; Loughran & O’Neill, 2016), feed-for-
ward neural networks (Bickerman, Bosley, Swire, & Keller, 
2010), recurrent neural networks (“Google Magenta,” n.d.)), 
and grammars (Gillick, Tang, & Keller, 2010; Keller & 
Morrison, 2007). The optimizing component could be gra-
dient descent for neural network generators (Geoffrey E. 
Hinton, D. E. Rumlhart, & Ronald J. Williams, 1988), more 
genetic algorithms (Loughran & O’Neill, 2016), human in-
put (Biles, 1994), or variable neighborhood search (Herre-
mans & Chew, 2016). 

Genetic Algorithms 
Of the aforementioned approaches, genetic algorithms (GA) 
have shown promising results and thus have been used in a 
number of automatic composition systems over the past 25 
years (Gibson & Byrne, 1991). Genetic algorithms consist 
of a population of solutions to a problem and a fitness func-

tion that is used to rank those solutions. Solutions are itera-
tively ranked, crossed with each other to produce a new gen-
eration, and then mutated. As this process is repeated, the 
fitness of the solutions in the population increases. An im-
portant aspect of designing a genetic algorithm is choosing 
a representation for the genotype and phenotype. Genotype 
refers to how the data is encoded in the computation space 
so that it can be manipulated in mutation and crossover, and 
is usually a simple list of numbers. The phenotype is the ex-
pression or decoding of that data in a form that is relevant to 
the solution-finding process, and in this case is the music 
that the fitness function receives. Choosing how the geno-
type is decoded to the phenotype affects what musical fac-
tors are fixed and what factors are learned, and it also affects 
the size of the solution space that is being optimized. Part of 
the appeal of genetic algorithms for generating music is that 
they can have a simple genotype that maps to the output mu-
sic, rather than directly representing all the parametric com-
plexities that the music may contain. Additionally, genetic 
algorithms can be endowed with domain specific infor-
mation about musically relevant attributes and relationships 
in the form of mutation, crossover, and selection methods. 
Further, they allow the amount of randomness in the output 
to be adjusted in the form a mutation rate. In a musical ge-
netic algorithm, these mutations often result in meaningful 
manipulations, such as repeating a section, reorganizing a 
chord, or reversing a sequence of notes.  

Musical Fitness Functions 
The fitness function is an important part of a musical genetic 
algorithm, as it determines what solutions are deemed 
“good”. The problem is that in music, “good” solutions are 
subjective and highly dependent on context. The extent to 
which a particular sequence of pitches will work is not in-
herent either in the pitches themselves or their organization; 
it is also a function of harmonic context, rhythmic configu-



ration, the pitches that precede and follow it, expressive tim-
ing, dynamic contour, and timbre. Further complicating the 
issue is that perception of musical organizations is affected 
by interactions between musical parameters. In some cases, 
the rhythm of a musical gesture will dictate perceptual 
grouping and in others it may be the pitch or timbral se-
quence. As humans, such perceptual organization is primary 
to our aesthetic evaluation of musical gestures. One must 
also consider how to allow the output to feel creative, as op-
posed to a satisfactory regurgitation of rule-based conven-
tions. Even when a good fitness function is written, it likely 
cannot be reused if the kind of desired musical output 
changes. For instance, a fitness function that knows the rules 
of baroque four-part harmonic voice leading would likely 
have little overlap with a fitness function that judges the 
quality of a Dubstep Wobble Bass. Designing a function that 
captures the ambiguities and complexities of such processes 
and requirements would be exorbitantly difficult, if possible 
at all.  
 One way to address the aforementioned issue is to use hu-
man feedback as the fitness function. In these interactive ge-
netic algorithms (IGA), a human evaluates each chromo-
some that is produced. Interactive genetic algorithms excel 
because they incorporate human aesthetic preferences, 
which influence the output of the system in the direction of 
more pleasing results. The drawback of this process is the 
tedious effort on the part of the human trainer. An additional 
concern is the consistency of human feedback, which may 
vary because of a number of factors including attention, rep-
etition, sequence effect, context, and fatigue. The ways in 
which the consistency of human feedback affects fitness in 
interactive genetic algorithms needs to be further clarified.  
 To avoid the tedious and inconsistent results of a human-
feedback fitness function, one could derive an automatic fit-
ness function by learning from existing music. The hope is 
that a learned function will still follow conventions, but 
without being restricted to the rules a programmer can cre-
ate. One such data-driven fitness function is a recurrent neu-
ral network (RNN). In a feedforward neural network, the 
output is a function of only the most recent input. If one note 
was passed in, the next note would be predicted based only 
on that note, similar to a 1st order markov chain. In an RNN, 
the output is function of all previous inputs: an infinite order 
markov chain.  One challenge of automatic fitness functions 
for music is how to encode the input in a machine readable 
format. For RNNs, the input is typically a representation of 
a sequence of pitches and durations. In the case of a MIDI 
representation, the sequence is encoded as note on, note off 
and velocity events that are fed into the RNN. Each event 
could also be accompanied by human-labeled information, 
such as chord progression, which is needed to predict the 
next event. In most cases, RNNs have been used in music to 
generate music, rather than to judge it (Chen & Miikku-

lainen, 2001; “Google Magenta,” n.d.). Specifically, musi-
cal RNNs often end with a softmax layer with one class for 
each possible note. Softmax is a function that converts the 
output of the previous layers into a probability distribution 
over the possible notes. The node in the output of the soft-
max layer with the highest activation represents the next pre-
dicted note. In this way, a musical sequence can be produced 
given a starting note or set of starting notes. This architec-
ture makes it straightforward to generate monophonic mel-
odies. 
 Neural networks have been combined with genetic algo-
rithms in a number of ways. Biles, Peter, and Loggi (1996) 
used a small feed forward neural network to learn the fitness 
of single measures and phrases given only the genotype (in-
dexes), not the phenotype (pitches). Genetic algorithms 
have been paired with RNNs to maximize a rule-based fit-
ness function (Chen & Miikkulainen, 2001). In this ap-
proach the RNN is used as generator of music, and the ge-
netic algorithm evolves the best RNN according to a hand-
crafted fitness function. RNNs have also been used as a fit-
ness function where fitness ratings were based on similarity 
to two melodies. In this case, the RNN acted as a distance 
function between the generated music and the two example 
pieces (Sheikholharam & Teshnehlab, 2008). Our approach 
uses an RNN as a fitness function, where the RNN was 
trained on a large music corpus with the goal of judging mu-
sical fitness in a broader sense. 

Current Study 

Writing a fitness function for a genetic algorithm is difficult, 
and using human feedback as the fitness function is tedious 
and potentially inconsistent. Given the features of RNNs 
and their successful combination with genetic algorithms in 
other scenarios, we wonder if an RNN used to give fitness 
feedback to a genetic algorithm music generator would yield 
easier and more promising results. Our project thus seeks to 
achieve the following objectives: 

1. Use an RNN to provide fitness feedback to a ge-
netic algorithm music generator 

2. Compare human-feedback fitness functions to 
RNN fitness functions to determine the strengths 
and weaknesses of each 

Design 

Genetic Algorithm for Music Generation 
The genetic algorithm in our system is based on the descrip-
tion of GenJam provided in Biles (1994), but has a number 
of key differences. We used population sizes on the order of 
256 measures and 256 phrases, as opposed to 32 and 48 as 



used in GenJam. Larger populations create more opportuni-
ties for a high-fitness gene to be found. We also included an 
additional random-bit mutation operation, which unlike the 
other mutations does not attempt to preserve musical quali-
ties or manipulate them according to conventions of har-
mony and rhythm. This can be tolerated by the RNN, but 
was avoided in human training to avoid subjecting the lis-
tener to the results of mutations that are unlikely to improve 
the gene. Another difference in our system is that fitness is 
assigned to measures and phrases at each generation, not ac-
cumulated over generations. We accumulated human feed-
back over each generation in order to smooth variable re-
sults. We assigned fitness to the log-likelihood output of the 
RNN. These changes were made possible because we aren’t 
limited by the patience or concentration of human evalua-
tors. 
 The parameters in our system include smallest rhythmic 
interval, allowed pitches, measure population size, phrase 
population size, number of measures per phrase, and initial 
note distribution. Velocity was set to a constant value during 
both manual and RNN training as its inclusion presents 
complexities in both training conditions.  

Populations and Mutations 
Our genetic algorithm is composed of two populations: the 
phrase population and the measure population. The ra-
tionale behind this is to make it easier for patterns and repe-
tition to arise at various levels within a grouping hierarchy. 
Another benefit of two populations is that it permits longer 
sections of music to be evaluated for fitness by the RNN. 
 Each individual in the measure population contains 
pitches, rests, and sustains of the previous note or rest. Sus-
tains are used to create notes that are held longer than the 
one gene. This has the advantage of keeping measure genes 
all the same length. Phrases are a sequence of measures, and 
the phrase genes are indexes to a measure in the measure 
population. The number of genes at the phrase level can vary 
according to the chord progression being used. For example, 
if the chord progression spans eight measures, each phrase 
gene would contain eight numbers that correspond to those 
measures. Each of these measures would, in a 4/4 time sig-
nature with one gene equaling one 8th note duration, contain 
eight genes. This gene duration is the smallest rhythmic in-
terval, and is another parameter of our system (16th notes 
are the smallest intervals used in our experiments). Each 
measure-gene ranges from 0 to 15, so as to fit neatly within 
two bytes. 0 indicates a rest, 15 indicates a sustain of the 
previous rest or note, and 1-14 indicates a new note. The 
numbers 1-14 are an index into the list of allowed pitches 
for the current chord. These lists of allowed pitches control 
how genes in the measure genotype are mapped to actual 
pitches. For instance, if the current chord is a C major 7, the 
allowable pitches would be C D E G A B, which would cre-
ate the allowed pitch map {C3 = index 1 … D5 = index 14}. 

Because we only allow two bytes per gene, the lists of al-
lowed pitches for a chord can only contain 14 pitches. More 
bytes could be allocated and more pitches allowed, but we 
chose to follow the sizes used in GenJam to reduce the num-
ber of variables being manipulated. We use the same lists of 
allowed pitches as detailed in Biles (1994). 

Like GenJam, we initialize only the phrase population 
uniformly randomly. For the measure population, the initial-
ize with a fixed probability distribution of 20% rests, 20% 
sustains, and 60% notes, which was copied from GenJam. 
Unlike GenJam however, the measure genes that are notes 
(1-14) are not uniformly random. The first note gene in a 
measure is constructed by picking a number uniformly at 
random from 1 to 14. For all subsequent notes in that meas-
ure, a note is selected uniformly randomly from a range of 
plus or minus three of the previous notes. For example, if a 
sequence started 4, 15, 0, 15, then the next note would be 
randomly selected from 4 ± 3. This initialization method re-
duces the number of large intervals between notes. This is 
desirable because large intervals are less common in typical 
tonal melodic sequences and thus are judged with lower fit-
ness by our RNNs, so reducing these in the initial population 
yields faster convergence. It also yields faster convergence 
for human training for the same reason. The mutation oper-
ations include sorting, shuffling, and transposing. Phrase 
mutations are primarily based on fitness so that either better 
measures or revived unused measures perpetuate. For a de-
tailed analysis of the mutations used, our code (linked in the 
results section) will be the best resource, along with the de-
scriptions provided by Biles (1994).  

Recurrent Neural Networks 
We experimented with three different RNNs that are avail-
able in Google's open source Magenta project (“Google 
Magenta,” n.d.): Improv RNN, Attention RNN, and Look-
back RNN. The Improv RNN model generates melodies 
that are conditioned on a chord progression (Simon, 2017). 
The other two do not incorporate accompanying chords 
(see Waite, 2016). All of the models used were pre-trained 
by Google on datasets containing thousands of songs. 
Training our own model on small but specific dataset, such 
as the Weimar Jazz DB, did not improve our results with 
Attention RNN or Lookback RNN. Furthermore, training 
Improv RNN requires chord labels, which were unavailable 
in a consistent format. We used two hidden layers with 
modified LSTM cells, 64 nodes per each hidden layer, and 
a 128-class softmax. While these networks are designed for 
music generation, we used them for computing fitness. To 
do this, we computed the log-likelihood of a given se-
quence generated by the genetic algorithm. In other words, 
we determined the forward pass of each note on/off/sustain 
event sequentially, and the network returned a measure of 
how likely it was that the event sequence came from the 



distribution of its training data. This was used as the fitness 
value for the sequence. While the magenta team has not re-
leased the dataset used to train these networks, we know 
they consist of monophonic melodies with chord progres-
sions in the case of Improv RNN.  

Human Fitness Function 
In order to evaluate the RNN as a fitness function, we com-
pared it to one based on human-feedback. The latter is how 
the original GenJam was trained, and we reproduced those 
results here. Two of the authors participated in human train-
ing sessions. In each session, the participant listened to the 
output of each generation accompanied by backing chords 
and a monophonic bass line. The tempo of musical selec-
tions was between 100 and 160 bpm. The participant evalu-
ated musical statements by pressing ‘g’ (“good”) or ‘b’ 
(“bad”) on a computer keyboard whenever so inspired. 
When ‘g’ was pressed, the phrase and measure that was 
playing three beats ago had fitness increased by 1; when ‘b’ 
is pressed, 1 was subtracted.  

Because an evaluative response does not occur simulta-
neously with the presentation of a stimulus, a delay param-
eter needs to be introduced to account for the amount of time 
it takes a participant to register his or her feedback. We used 
a delay of three beats in accordance with Biles (1994), but 
note that the time between stimulus presentation, percep-
tion, evaluation and response is complex, variable and con-
text-dependent. Determining an accurate measure of feed-
back delay was outside the scope of this particular study, 
and thus presents a limitation of our results. 

Results 

Evaluating the RNN Fitness Function 
We used three inputs to evaluate the RNN as a fitness func-
tion: random notes, the tonic played repeatedly, and profes-
sional jazz solos. Random notes consisted of randomly se-
lected pitches from the set {MIDI notes 0-127} and ran-
domly selected rhythmic durations from the set {16th, 8th, 
quarter, half, whole}; all notes had a constant velocity. We 
used the Weimar Jazz Database as a source of professional 
jazz solos. We used 7 sequences of each input type with 
lengths between 20 and 400 notes. Only 7 sequences were 
tested because labeling jazz solos was time consuming. The 
lengths of the jazz solos were fixed, but the random and 
tonic sequences were given random lengths. Generating this 
graph multiple times over difference random samples pro-
duced consistent results. Each input sequence was run 
through each RNN and the resultant fitness was divided by 
sequence length. This division compensates for the fact the 
RNN accumulated log-likelihood with respect to length, so 

dividing by length makes sequences more comparable de-
spite varying in length.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The random and tonic inputs produced lower fitness scores 
than the professional input (see Figure 1). This suggests that 
Improv RNN can indicate fitness in a basic, musically appro-
priate way. Conversely, both Lookback RNN and Attention 
RNN preferred the random to the professional input, which 
indicates they are not appropriate to use as fitness functions.
  
 We also evaluated how the Improv RNN ranked pitches 
for a given harmonic context (see Figure 2 and Figure 3). 
We created a string of four measures of notes of various du-
rations at the pitch we wanted to test, and labeled them as 
being accompanied by a C major 7 chord (C3, E3, G3, and 
B4). For example, the blue dot in the upper left corner of 
Figure 2 shows the fitness of a sequence of 16 quarter notes 
of the pitch C3, labeled with C Major 7 as the accompanying 
chord. With the current chord labeled as C Major 7, the high-
est fitness pitches at the quarter note duration were G fol-
lowed by E and the lowest fitness pitches were C# and F#. 
When we compare this to models of pitch hierarchies in hu-
man perception, we see similar distinctions between compo-
nents of the major triad, the other members of the diatonic 
scale, and the non-diatonic chromatic pitch classes 
(Krumhansl, 1979). These results show that although the 
conventions of functional tonal harmony are not explicitly 
encoded in Improv RNN, it is able to recognize basic triadic 
and diatonic hierarchical weightings that correspond to 
those conventions. This is also true for 8th notes, but not for 
16th notes, indicating that harmonic interpretation depends 
on rhythmic context. 
 
 
 
 
 
  
 

Figure 1 Improv RNN prefers professional over the tonic and 
random inputs 



 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 Looking at the fitness as a function of the length of the 
random note sequence provides another means of compari-
son (see Figure 4). The results show that the longer the se-
quence provided to the RNN, the more consistent its fitness. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 The Improv RNN is able to converge to a stable total fit-
ness for each population within 30 generations (see Figure 
5). A major flaw of the Improv RNN is that because it prefers 
certain notes, convergence in practice means only those 
notes will be played. Generations after 14 become incredi-
bly repetitive, and by generation 40 the population consists 
almost entirely of whole notes on the highest fitness pitches. 
Mitigating such behavior is left for future work. 

 
 
 

  

 

 

 

Evaluating the Human Fitness Function 
We now present analysis of human fitness feedback given 
during training. We found that roughly 10 generations with 
32 measures and 48 phrases are needed before the first 
"golden" generation appears. This matches the results re 
ported by Biles (1994). The analysis in Table 1 shows the 
feedback that was gathered over one training session. In this 
instance, 17 measures out of the 32 total were given feed-
back. Note that not all measures in the population receive 
fitness feedback all the time, which makes convergence 
slower. 
  
 

Count Min Max Mean Std. dv. Mode 

1 -1 -1 -1 0 -1 

12 -6 4 -1.66 4.55 1 

4 1 3 2.5 0.86 3 

7 1 4 2.71 1.48 1 

6 1 3 2 1 1 

1 1 1 1 0 1 

2 -1 1 0 1 1 

3 1 2 1.66 0.47 2 

7 -1 5 3.57 2.32 5 

1 1 1 1 0 1 

2 -1 -1 -1 0 -1 

6 -2 2 0 1.73 1 

7 -5 2 -3 3.16 2 

35 -5 8 2.71 4.28 3 

10 -2 6 3 3.68 6 

4 -2 -1 -1.5 0.5 -1 

14 -1 4 1.42 1.87 4 

Table 1 Feedback to measures over one training session. Count 
represents how many times a measure received feedback. Min 
through mode represent statistics about the feedback scores. 

Figure 2 Fitness of pitches in the harmonic context of a C Major 
7 chord (C3, E3, G3, B3). 

Figure 3 Fitness of pitches in the harmonic context of a C Major 
7 chord (C3, E3, G3, B3). This is a continuation of Figure 2. 

Figure 4 Increasing length gives more consistent fitness 

Figure 5 Sum of fitness of all measures in the measure population 
over time in Improv RNN training process. 
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This is because fitness is unchanged if neither ‘g’ nor ‘b’ 
is pressed by the human trainer. This is in contrast the 
RNNs, which provide feedback at every iteration. Each row 
in Table 1 represents one of those 17 measures. The results 
show that in many cases, feedback for a particular measure 
is inconsistent. For example, the second row shows that one 
measure was given feedback 12 times. At one point, it was 
given a score of -6, and another time 4. 
 This could mean, for example, that the measure got 6 
"bad" one time (-6), and another time got 5 "good" and 1 
"bad" another time (5 - 1 = 4). There are many potential ex-
planations for this inconsistency. The value of a particular 
measure is not inherent, instead, it depends on the music that 
preceded it, which is part of its context. Different anteced-
ents will affect the perceived value of the same consequent. 
Attention is another potential factor: in one instance the par-
ticipant may focus on rhythm while in another instance (of 
the same measure) she may focus on melodic contour. Par-
ticipants may be excited and interested at some times and 
tired or bored at others, which may influence the fitness rat-
ing given to the measure. Our findings support the notion 
that human listeners do not have a fixed criterion for fitness 
like the RNN does. The inconsistency of human feedback 
makes convergence to a result with high fitness difficult. 
This is not to say that human training doesn't work, but ra-
ther that it reaches a point where the piece stops improving. 

Tuning of Parameters 
The most important of the aforementioned parameters are 
smallest rhythmic interval and allowed pitches. The other 
parameters, measure population size, phrase population 
size, number of measures per phrase, and initial note distri-
bution also influenced results.  

Smallest rhythmic interval defines the resolution of one 
gene in the measure-level population. We found that 16th 
note durations at tempos above 120 bpm were difficult to 
judge in the human-feedback condition. This was especially 
true for the first few generations, which contained large in-
tervals between pitches and non-repeating rhythms. We 
found that training was easier with a minimum rhythmic in-
terval of an 8th note. Conversely, the RNN does not have 
the same kind of perceptual limitations when it comes to 
processing rapid information. Thus, the choice of the small-
est rhythmic interval is based on aesthetic preference, and 
on the training data used when training the RNN. 

Lists of allowed pitches define which pitches are permit-
ted to be played over a given chord. Recall that numbers in 
the measure-level population are not MIDI notes them-
selves, but are numbers from 1 to 15 representing an index 
of the list of allowed notes in a chord. One might let the al-
lowed pitches to include all of those in a desired key. How-
ever, one can further allow or restrict the lists of allowed 
pitches according to aesthetic preferences. 

In practice, the size of a population is affected by the 
training condition. In the human-feedback condition, we 
found that evaluating more than 200 measures in a genera-
tion was tedious. Computers have no such constraints, and 
therefore can entertain larger initial measure and phrase 
populations, which lead to higher eventual fitness.  

The number of measures per phrase is mostly a function 
of the chord progression. While a chord progression cannot 
last longer than a phrase, one can make the number of 
measures per phrase longer than one's chord progression. 
Longer phrases thus allow different configurations of 
measures and chord progressions, which allows the RNN to 
evaluate and influence relationships between groups on 
higher hierarchical levels.  

Analysis of the Resulting Populations 
We analyzed one Improv RNN training process to determine 
which note durations, pitches, and measures out of a popu-
lation it prefers. For this analysis, we used the Improv RNN 
for 14 generations, which took about 112 minutes. This 
length was chosen because it was close to the amount of time 
used by the human trainers. 

First, we looked at preferred note durations. We counted 
the occurrence of each duration type in each generation and 
plotted them against each other. The result is shown in Fig-
ure 6. The network preferred 8th notes, since they are the 
most prevalent over the training process and survived more 
than any other into the final population. However, the total 
number of notes played decreases and the occurrence of 
longer notes increases over time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Second, we analyzed the algorithm's usage of different 
pitches. The output of the algorithm can either be a rest (0), 
a note (1-14), or a sustain (15). Usage of each is counted and 
plotted for each generation (see Figure 7). Over time, the 
training process converged towards fewer rests and more 
sustained notes, and the latter became increasingly prevalent 
as compared with new notes. Also notable is the increase in 
notes 8 and 10, which in all of our lists of allowed pitches 

Figure 6 Stacked graph of note duration used when evolving 
with Improv RNN  



map to the root and third of the chord one octave up. This 
reinforces our finding that Improv RNN prefers pitches that 
conventionally have harmonic weight. 
 Finally, we analyzed the measures used in each phrase of 
the algorithm output. Figure 8 shows a stacked plot of the 
prevalence of each measure in each of the algorithm's gen-
erations. While the figure doesn’t represent the specific con-
tent of measures, it does show that most measures get rela-
tively equitable usage in the population. This is surprising 
because during the human fitness training, some measures 
dominated the population (see ). One explanation would be 
that the RNN is trained on a large and diverse corpus. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Conclusion and Future Work 

We show that an RNN designed for music generation can be 
used as a fitness function for a genetic algorithm that pro-
duces monophonic solos over a given chord progression. 
We conducted training sessions with human participants in 
order to compare and quantify some of the differences be-
tween human-feedback and RNN fitness functions. We 
found that the inconsistency of human feedback creates 
problems in regard to the convergence of solutions. Addi-
tionally, the process of manually providing feedback is tedi-
ous. Our results suggest that certain types of recurrent neural 
networks can address these issues, and thus should be ex-
plored in future research. Training Improv RNN on a large, 
well labeled, dataset of a specific genre or composer would 
be useful in exploring whether RNNs can fit closely to data 
with less variation, such as four-part harmony. Also of in-
terest is how manipulation of the aforementioned parame-
ters, such as length and allowed pitches, affects the musical 
characteristics of results. More rigorous experiments com-
paring human evaluations and RNN evaluations will pro-
vide useful feedback for designing better RNNs. Research 
that illuminates how these characteristics are perceived by 
human listeners will enable more thoughtful revisions of the 
algorithm. An interdisciplinary approach that draws from 
computer science, cognitive psychology and music theory 
will be helpful in this effort. 

Links 

You can listen to raw outputs as well as compositions made 
using http://petermitrano.github.io/plonky/. 
 
The full source code for replicating our results and analysis 
is available at https://github.com/Arthurlockman/plonky. 
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