
‘My Little ChucKy’: Towards Live-coding with Grammatical Evolution
Paper Type: Work In Progress

Róisı́n Loughran and Michael O’Neill
Natural Computing Research and Applications Group (NCRA)

University College Dublin, Ireland
roisin.loughran@ucd.ie

Abstract

This paper proposes an initial framework for using
PonyGE, a python implementation of Grammatical
Evolution in generating ChucK files for music creation.
We develop a number of grammars for creating individ-
ual instruments as shreds that can be added or sporked
to the ChucK VM via the command line. A quicktime
video example of the system running is provided. We
propose that this strongly-timed system can be devel-
oped and generalised in the future to fully explore the
capabilities of ChucK and to consider implications for
Evolutionary Music.

Introduction
Grammatical Evolution (GE) is a grammar-based Evolution-
ary Computation (EC) algorithm (Brabazon, O’Neill, and
McGarraghy, 2015). Evolutionary systems, such as GE, de-
velop solutions to a given problem by considering a popula-
tion of individual solutions over a series of successive gen-
erations, rather than trying to deterministically improve one
single solution. In recent years, such systems have been ap-
plied to creative tasks such as art and music. We present
the initial framework for developing an evolutionary system
that generates music using the live-coding language ChucK
(Wang, Cook, and others, 2003). By the using the on-the-fly
command programming capabilities of ChucK, shreds (each
written as an individual file) can be added or sporked to a
ChucK VM by the user at the command line. We develop
a series of grammars that generate individual ChucK files
for new shreds, that currently correspond to specific instru-
ments. Each of these shreds can then be added or removed
to the running virtual machine (VM) by the programmer.

‘My Little ChucKy’ is so named as it is an early stage sys-
tem that uses PonyGE — a python implementation of GE in
evolving the ChucK files. The following section introduces
GE and live coding and describes some previous work in
evolutionary composition. The remainder of the paper de-
scribes the system framework and proposes how it will be
developed in future work.

This work is licenced under Creative Commons ”Attribution 4.0
International” licence, the International Workshop on Musical
Metacreation, 2016, (www.musicalmetacreation.org).

Background
This section introduces Grammatical Evolution, Evolution-
ary Composition and Live Coding for musical applications.

Grammatical Evolution
GE is a grammar based algorithm based on Darwin’s the-
ory of evolution. As with other evolutionary algorithms, the
benefit of GE as a search process results from its operation
on a population of solutions rather than a single solution.
From an initial population of random genotypes, GE per-
forms a series of operations such as selection, mutation and
crossover over a number of generations to search for the op-
timal solution to a given problem. A grammar is used to map
each genotype to a phenotype that can represent the prob-
lem under investigation. The success or ‘fitness’ of each
individual can then be assessed as a measure of how well
this phenotype solves the problem. Successful or highly fit
individual reproduce and survive to successive generations
while weaker individuals can be weaned out.

Grammar The creative capabilities of GE in part result
from the choices offered within the mapping of the grammar.
Typically, the genome is represented by a combination of
8 bit integers known as codons. These codons select the
particular rule for a given expression according to the mod
value from the number of choices for that rule.

Rule = (Codon Integer Value)mod(# of choices) (1)

Using this we can introduce biases to our grammar by in-
cluding multiple instances for preferred choices. For exam-
ple, the operand depicted below offers three choices, two of
which are choice1. Thus there is a 2:1 bias towards the selec-
tion of choice1 over choice2. Such biases can be exploited
in the design of grammars.

<operand>:: = <choice1>|<choice1>|<choice2>

The grammar specified for the proposed system is strongly
typed to produce legitimate ChucK code as detailed in the
next section.

Evolving Music
A number of previous studies have employed EC techniques
for melodic composition. One of the most successful and
well-known applications is GenJam (Biles, 1994) which

uses a Genetic Algorithm (GA) to evolve jazz solos. This
system has been modified and developed into a real-time,
MIDI-based, interactive improvisation system that is regu-
larly used in live performances in mainstream venues (Biles,
2013). A modified GA was used in GeNotator (Thywis-
sen, 1999) to manipulate a musical composition using a
hierarchical grammar. Göksu et al evolved and evaluated
both melody and rhythm separately using Multi-layerd Per-
ceptrons (MLPs) (Göksu, Pigg, and Dixit, 2005). These
evolved melodies were then mixed to produce verses and
whole songs. Dahlstedt developed a system that implements
recursively described binary trees as genetic representation
for the evolution of musical scores. The recursive mecha-
nism of this representation allowed the generation of expres-
sive performances and gestures along with musical notation
(Dahlstedt, 2007). Adapted GAs were used with local search
methods to investigate human virtuosity in composing with
unfigured bass (Munoz et al., 2016), with a grammar to
augment live coding in creating music with Tidal (Hickin-
botham and Stepney, 2016), and with non-dominated sort-
ing in a multi-component generative music system that could
generate chords, melodies and an accompaniment with two
feasible-infeasible populations (Scirea et al., 2016).

GE and Music Composition While a number of systems
used grammar based systems for music composition McCor-
mack (1996), GE was first specifically used for this purpose
in de la Puente, Alfonso, and Moreno (2002). In this pa-
per GE generated melodies for a specific processor but the
melodies produced were not presented or discussed. GE has
been implemented for composing short melodies in Reddin,
McDermott, and O’Neill (2009). From four experimental
setups of varying fitness functions and grammars they de-
termined that users preferred melodies created with a struc-
tured grammar. GE was again employed for musical compo-
sition using the Wii remote for a generative, virtual system
entitled Jive, Shao et al. (2010). This system interactively
modifies a combination of piece-wise linear sequences to
create melodic pieces of musical interest.

GE was used with a number of different fitness mea-
sures in numerous versions of a system that created MIDI
melodies by developing a grammar that expanded the
genome into a series of notes, turns, chords or arpeggios.
Early versions of the system used pre-defined fitness mea-
sures based on statistical tonal measures (Loughran, McDer-
mott, and O’Neill, 2015b) or Zipfs Laws (Loughran, McDer-
mott, and O’Neill, 2015a). Later version of the system were
developed to emanate a self-adaptive system, whose fitness
measure was based on the concept of conforming to the
popular opinion of the population (Loughran and O’Neill,
2016). This resulted in a complex adaptive system that was
self-referential and autonomous once it had been initialised.
This system was generalised from a ranking-based system to
a clustered based system in (Loughran and O’Neill, 2017).

Live Coding
Live coding is a practice where software that creates music
(and sometimes visuals) is written and manipulated in real-
time as part of a live performance (Brown and Sorensen,

2009). Typically in a performance, the code is made visi-
ble on large screens, thus providing a more transparent ex-
perience to the audience. This leads to the possibility of
glitches (or all-out crashes) within the software during the
performance, the re-working or patching of which is part
of the skill and nuance displayed by the composer (Collins
et al., 2003). While a number of specific coding environ-
ments have been developed specifically for live coding mu-
sic, live coding can be implemented in any computing lan-
guage. The proposed system is developed using ChucK, a
popular, strongly timed live coding programming language
(Wang, Cook, and others, 2003).

Method
This section offers an overview of the system, detailing the
representation, grammar and fitness function used.

ChucK
The ChucK usage in this version of our system is based
on an adaptation of the on-the-fly programming synchroni-
sation examples provided by the creators of ChucK, Perry
Cook and Ge Wang, available at http://chuck.cs.
princeton.edu/doc/examples/. These initial ex-
periments involved the creation of individual grammars that
could re-create a valid variation of each of the provided .ck
files. GE was run independently multiple times, the run
number specifying the grammar to be used and the name
of the .ck file to be created. Each time the GE program is
called, six individual .ck files are created. These can then
be added or removed as ChucK shreds from VM by the pro-
grammer at the command line.

Grammar
We have written six distinct grammars, each of which is run
with GE to create a distinct instrument that can be sporked
as a ChucK shred. In following the on-the-fly examples,
each file begins with a specified code block followed by a
while loop. Each grammar specifies the initial conditions
for the given instrument and then introduces a flag before
continuing to the code loop. Hence the first line in each
grammar consists of:

<return> ::= <pre> L <code>

This states that the result will be comprised of some pre-
code specified in <pre> followed by the body of code
<code> and separated by the flag ‘L’. The <pre> speci-
fies the details for starting the code. For example in the first
grammar, which creates the kick drum beat:

<pre> ::= .5::second => dur T;
T - (now % T) => now;
SndBuf buf => Gain g => dac;
me.dir() + "data/kick.wav" => buf.read;
.5 => g.gain;

This section of the grammar reads the sound file into the
buffer, sets the gain and synchronises the resultant sounds to
a period. This is currently hard-coded through the grammar
— there are no non-terminals for GE to choose between.
The remainder of the kick drum grammar consists of:

<code> ::= <line1> ; <line2> ; <line3> ;
<line1> ::= 0 => buf.pos
<line2> ::= <gain> =>buf.gain
<gain> ::= 0.8|0.82|0.84|0.86|0.88|0.9
<line3> ::= <dur>::T =>now
<dur> ::= 0.5 | 1 | 1

This grammar returns three lines of code. <line1> sets the
play position to the beginning. <line2> offers a choice
for the given gain and <line3> allows options for the du-
ration, by advancing time. Note that the options for the
<gain> are each equally likely, but there is a 2:1 bias to-
wards advancing time by 1 rather than 0.5. Such biases can
be introduced to the grammar as a design feature by the pro-
grammer.

The remaining grammars are implemented in a similar
manner although some, such as that for snare-hop, allow
multiple possibilities as to where in the period the instru-
ment will sound:

<line1> ::= <gain> =>buf.gain
<gain> ::= 0.7 | 0.8 | 0.85 | 0.9
<line2> ::= where => buf.pos
<line3> ::= <single>|<single>|<mix>|<mix>|

<mix>|<mix>|<double>
<single> ::= 2::T => now
<mix> ::= .25:: T => now;<line2>;.5::T => now;

<line2>;1::T => now;<line2>; .25::T => now;
<double> ::= .75::T => now; <line2>;

1.25::T => now

The above grammar offers three alternatives as to where
(and how many times) the snare will sound within the bar
<single>, <mix> and <double>.

The melodic content is created using Sin oscillators with
a specified scale structure. For example, Grammar5 consists
of:

<return> ::= <pre>L <code>
<pre> ::= .5::second => dur T;
T - (now % T) => now;
SinOsc s => dac;
.25 => s.gain;
<scale>@=> int scale[];
<scale> ::= [0,2,4,7,9]|[1,3,8,9,11]
|[0,1,2,3,4]|[4,5,7,10,11]

<code> ::= <line1> ; <line2> ; <line3> ;
<line1> ::= scale[Math.random2(0,4)] =>

float freq
<line2> ::= Std.mtof(21.0 +

(Math.random2(0,3)*12 + freq)) => s.freq
<line3> ::= <dur>::T =>now
<dur> ::= 0.25 | 0.5

The <scale> options in such a grammar dictates the
degrees of the scale that are playable by the evolved
instrument. A Sin oscillator based on multiples of
[0,2,4,7,9] for instance would be pleasantly harmonic,
whereas [0,1,2,3,4] would lead to more dissident in-
tervals created by the instrument.

The above grammars are vey specific, and purposely lim-
ited to conform to the given example instruments. Allowing
a choice of instruments — through an option in a .wav file
chosen in the <pre> for example — would immediately al-
low more variation in the sounds produced by the resultant
files. Such a change would require further efforts in design-
ing the grammars to ensure that legal code is generated re-
gardless as to which instrument was chosen.

Fitness Measure
For this initial framework system we have implemented a
purely random fitness function. While such measures may
be alien to many EC researchers, as random fitness does not
favour an individual for any justifiable reason, random fit-
ness has been used in musical applications by incorporating
only highly fit individuals within the population from initial-
isation (Biles, 2013; Eigenfeldt and Pasquier, 2012). From
the grammar above, we only allow valid individuals for gen-
erating ChucK code. In the next version of the system, we
plan to implement a more meaningful fitness measure such
as one that responds to the evolution of the system itself, as
proposed in Loughran and O’Neill (2016, 2017).

Development
The code for this project is available at https:
//github.com/roisis/PonyGE2/releases/
tag/MuMe17. Please note that this code is still in de-
velopment. A quicktime video example of the system
running can be found at https://loughranroisin.
wordpress.com/home/projects/. This shows nu-
merous runs of the GE program creating multiple versions
of each ChucK Instrument that are added and deleted from
the VM at the programmers whim. At the moment, we
acknowledge that this system does not, on the surface,
achieve substantially more than the code provided by Cook
and Wang. However, we consider that the strength and
potential in this system lies in the facility for expansion.
The grammars specified above are currently limited to
conform to the examples. The next step in our development
is to to create more general grammars that can create valid
and more expressive ChucK code. EC has a long history of
use for program synthesis and is becoming an increasingly
popular approach in Software Engineering (Harman, Man-
souri, and Zhang, 2012). We plan to contribute to program
synthesis in the live coding domain specifically using the
ChucK environment.

As the grammars create code that is more generalised, the
next most important step we envisage is in the creation of a
more meaningful fitness measure. The current system only
creates valid instruments, known in each run, so any indi-
vidual is a valid selection. In EC, however, selection is what
runs the evolution, and in EC on creative applications, such

as music production, this selection is based on a subjective
measure — what makes one instrument or shred better than
another? This point is far from trivial, and in effect causes
the crux of the problem in applying EC to creative or sub-
jective tasks. Once we have a more generalised system,
we plan to address this issue in developing a more sophis-
ticated fitness function. Ideally we would like to develop
a fitness function that measures the worth of an individ-
ual, not through some pre-defined numerical measure, but
rather from a response of the system to its current state such
as that presented in Loughran and O’Neill (2016). Ideally
this would lead to a self-adaptive system that could generate
valid code for creating music with minimal human input.

Expansion in this way moves towards more autonomous
music generation: We do not wish to write code that makes
music, but to write code that writes code that makes music.

Conclusion
We have presented an implemented and working framework
for a system that augments live coding with GE, presently
entitled ‘My Little ChucKy’. While the system is still in
development, at the time of writing we are currently and
rapidly producing a more powerful and generalised system
that will take advantage of the capabilities of both ChucK
and GE. We plan to have a more sophisticated version of
this system ready for presentation at MuMe 2017.

Acknowledgments
This work is part of the App’Ed project funded by Science
Foundation Ireland under grant 13/IA/1850.

References
Biles, J. 1994. GenJam: A genetic algorithm for generating

jazz solos. In Proceedings of the International Computer
Music Conference, 131–131. International Computer Mu-
sic Association.

Biles, J. A. 2013. Straight-ahead jazz with GenJam: A quick
demonstration. In MUME 2013 Workshop.

Brabazon, A.; O’Neill, M.; and McGarraghy, S. 2015.
Grammatical evolution. In Natural Computing Algo-
rithms. Springer. 357–373.

Brown, A. R., and Sorensen, A. 2009. Interacting with gen-
erative music through live coding. Contemporary Music
Review 28(1):17–29.

Collins, N.; McLean, A.; Rohrhuber, J.; and Ward, A. 2003.
Live coding in laptop performance. Organised sound
8(3):321.

Dahlstedt, P. 2007. Autonomous evolution of complete pi-
ano pieces and performances. In Proceedings of Music
AL Workshop. Citeseer.

de la Puente, A. O.; Alfonso, R. S.; and Moreno, M. A.
2002. Automatic composition of music by means of
grammatical evolution. In ACM SIGAPL APL Quote
Quad, volume 32, 148–155. ACM.

Eigenfeldt, A., and Pasquier, P. 2012. Populations of popula-
tions: composing with multiple evolutionary algorithms.
In Evolutionary and Biologically Inspired Music, Sound,
Art and Design. Springer. 72–83.

Göksu, H.; Pigg, P.; and Dixit, V. 2005. Music composition
using genetic algorithms (GA) and multilayer perceptrons
(MLP). In Advances in Natural Computation. Springer.
1242–1250.

Harman, M.; Mansouri, S. A.; and Zhang, Y. 2012. Search-
based software engineering: Trends, techniques and ap-
plications. ACM Computing Surveys (CSUR) 45(1):11.

Hickinbotham, S., and Stepney, S. 2016. Augmenting live
coding with evolved patterns. In International Conference
on Evolutionary and Biologically Inspired Music and Art,
31–46. Springer.

Loughran, R., and O’Neill, M. 2016. The popular critic:
Evolving melodies with popularity driven fitness. In Mu-
sical Metacreation (MuMe), Paris.

Loughran, R., and O’Neill, M. 2017. Clustering agents for
the evolution of autonomous musical fitness. In Evolu-
tionary and biologically inspired music, sound, art and
design. Springer.

Loughran, R.; McDermott, J.; and O’Neill, M. 2015a.
Grammatical evolution with zipf’s law based fitness for
melodic composition. In Sound and Music Computing
Conference, Maynooth.

Loughran, R.; McDermott, J.; and O’Neill, M. 2015b.
Tonality driven piano compositions with grammatical
evolution. In Evolutionary Computation (CEC), 2015
IEEE Congress on, 2168–2175. IEEE.

McCormack, J. 1996. Grammar based music composition.
Complex systems 96:321–336.

Munoz, E.; Cadenas, J.; Ong, Y. S.; and Acampora, G. 2016.
Memetic music composition. IEEE Transactions on Evo-
lutionary Computation 20(1).

Reddin, J.; McDermott, J.; and O’Neill, M. 2009. Ele-
vated Pitch: Automated grammatical evolution of short
compositions. In Applications of Evolutionary Comput-
ing. Springer. 579–584.

Scirea, M.; Togelius, J.; Eklund, P.; and Risi, S. 2016. Meta-
compose: A compositional evolutionary music composer.
In International Conference on Evolutionary and Biolog-
ically Inspired Music and Art, 202–217. Springer.

Shao, J.; McDermott, J.; O’Neill, M.; and Brabazon, A.
2010. Jive: A generative, interactive, virtual, evolutionary
music system. In Applications of Evolutionary Computa-
tion. Springer. 341–350.

Thywissen, K. 1999. GeNotator: an environment
for exploring the application of evolutionary techniques
in computer-assisted composition. Organised Sound
4(02):127–133.

Wang, G.; Cook, P. R.; et al. 2003. Chuck: A concurrent,
on-the-fly, audio programming language. In ICMC.

