
Context: A Modular Approach to Sequencing

Liam Goodacre
F1 802 Success Towers, Panchavati, Pashan, Pune, MH 411008, India

Abstract

Context is a modular sequencer for Pure Data which re-
imagines composition in the form of a network. A sin-
gle Context unit functions as a step sequencer, a selec-
tor and an embedding environment for samples. Multi-
ple units are interconnected to form Context networks.
Users build networks to create their own sequencing en-
vironments which can be highly specialized, incorporat-
ing algorithmic, stochastic, structural, reactive and in-
teractive composition.

Introduction
The modular approach to audio synthesis has been popular
since the pioneering Moog and Buchla systems of the 1960s
(Pinch and Trocco 2009), but has proven to be equally suc-
cessful with computers (Kreidler 2009). In both its analog
and digital application, the basic idea of modularity is to
separate a larger system into smaller components (oscilla-
tors, signal processors, etc.), so that the composer can con-
nect them together and control them in a large number of
ways. Sequencers play an important role in modular systems
(Jenkins 2009). A sequencer is a hardware or software de-
vice that sends signals or messages in a timed, orderly fash-
ion, essentially determining for electronic music what hap-
pens, when (Brandt and Dannenberg 1999). It is common to
find sequencers controlling other units within modular en-
vironments, for example (Rothstein 1995), but rarely do we
see modular environments devoted primarily to sequencers.

Context is a sequencer that is designed to be truly and
fully modular. That is, Context is a sequencer which may
be perpetually duplicated and interconnected within its soft-
ware hosting environment. Context is built in Pure Data (Pd)
(Puckette 1996) as an abstraction and is used to control other
Pd objects and instruments by sending messages. By instan-
tiating multiple Context units and interconnecting them, the
user designs a special sort of sequencing environment called
a Context network, which can store and perform composi-
tions of any size. This paper presents the Context sequencer
and explores the potential of modular sequencing environ-
ments. The first section describes the GUI and language of

This work is licensed under the Creative Commons “Attribution
4.0 International” licence.

a Context unit, showing how it borrows techniques from tra-
ditional linear and non-linear composition. The second sec-
tion focuses on the Context network, looking at how mul-
tiple Contexts function when they are connected together.
The third section explores some possible applications for
Context, and how it might prove useful for composers and
performers. Emphasis is given to algorithmic and metacre-
ative methods, where the software is used to generate its own
musical expression.

Description of the Context unit
Context appears as a single object in a larger Pd patch (hence
it is often referred to in the singular). A Context unit, fig 1,
has a simple GUI layout which will seem familiar to anyone
with experience in electronic music production.

Figure 1: A single Context unit

The bottom contains a row of on/off toggles boxes (col-
lectively called the Pattern) which play a selected pattern
linearly, like a normal step sequencer. Each toggle corre-
sponds to a term from a database (not depicted), allow-
ing custom messages to be sent during playback, similar to
note∼ for Max/MSP (Resch 2013). The Context GUI is eas-
ily re-sizable using the mouse, so the Pattern can be of any
length. The Pattern length can be thought of as the number
of beats in a bar, while the number box in the top-left cor-
ner of the unit sets the duration of the playback in seconds.
When Context is started, a cursor moves across the screen
from left to right in the given time and the selected pattern
is played sequentially, a process called the Context cycle.

The step sequencer is a standard tool for linear playback,
and in this sense Context’s Pattern, while being useful, lim-
its composition to a deterministic framework (Cioslowski
2011). However, Context has a number of generative and
algorithmic capabilities which place it beyond the linear
realm. Two of these, the Burst and the Output Language,
are described here.

1

The Burst
The vertical row of toggles on the right side of Context’s
GUI are known as the Burst. As with the Pattern, each Burst
toggle corresponds to a database term and can trigger other
events in the network, but instead of firing in a sequence,
they all fire together at the end of the cycle. More important
than when the toggles fire is which toggles fire. This assign-
ment is randomizable, and the user can control the distribu-
tion, position and quantity of toggles that fire. This is de-
picted by the Bell curve in fig 2. (The image is rotated 90 ◦

in order to correctly render the graph. Imagine that the width
and position of the curve can be set. The graph represents the
likelihood of a given toggle being selected.)

Figure 2: Distribution of Burst toggle selection

The distinction between the Pattern and the Burst is cen-
tral to the Context sequencer, with the Pattern (x-axis) rep-
resenting a series distributed through time and the Burst (y-
axis) a series distributed through probability. The Burst is
primarily used as a selector, but can also generate chords.

Output Language
Context has a database which stores and sends custom mes-
sages. These messages are subject to a Term Rewrite sys-
tem (Nierhaus 2009), known as Context’s Output Language,
which allows the user to build mathematical formulas. The
syntax is similar to Pd’s native [expr] in that it performs
arithmetic, respecting bracket order (Yadegari 2003), but
also substitutes a set of variables with state specific values.
Variables include random numbers, position and state infor-
mation; expressions include arithmetic, musical scale map-
ping and custom functions processed through other Pd ob-
jects. For example, the message 10 - (? @)would return
a value of 10 minus a random number (?) whose upper limit
is determined by Context’s position on the canvas (@). Such
formulas can be extended indefinitely, allowing for a great
deal of complexity and control.

Input Language
Context has its own Domain Specific Language to control
its parameters. Some commands alter Context’s state (i.e. its
dimensions, toggle allocations and message database) while
others instruct it to perform certain tasks (i.e. start and
stop). The syntax requires commands, delimited by colons,
followed by command-specific arguments, followed option-
ally by further commands. For example, :X 9 :x 1 3 4
sets the Context’s x-axis to 9 units wide and opens Pattern
toggles 1 3 and 4. Input Language commands are sent to

Context from within the patch, or assigned as creation ar-
guments. This allows for persistent behavior, as the Context
state is automatically written to the creation argument when-
ever the patch is saved. The main GUI reflects only some of
the state, not all of it. Thus, Context can be seen primarily
as a text based system, with GUI access to its essential ele-
ments.

Figure 3: Relationship between Input Language and GUI

Embedding

Context’s canvas (the green area in fig 1) is an embeddable
timeline for arrays, markers and other special objects. Em-
bedded objects can be moved and resized around the canvas
and play linearly with the cursor as part of the cycle. In this
way, Context is used for sample playback and can even em-
ulate some basic DAW behavior (see for example Ableton’s
“Arrangement overview”, (Margulies 2014)).

Figure 4: A Context with embedded arrays and markers

Embedded objects are stored in a part of the patch known
as the Overlay. Any Pd object can be created in the Overlay,
allowing the user to modify or hack the normal behavior of
Context. The Input Language has an embedded interpreter
to read and write the Overlay file to the creation argument,
so that Overlay modifications may be saved.

Context Networks

A single Context has been seen to consist of a linear se-
quencer, a formula builder, a random selector, and an em-
beddable timeline, making it a useful though hardly original
device. But Context is designed to exist in a network, not
in isolation. In a Context network, Context agents commu-
nicate with each other by receiving, processing and sending
information asynchronously, resulting in complex heterar-
chical behavior. There are three main ways of connecting
Contexts together: connections, commands and rules, each
being a subset of the last. Being the simplest and most im-
portant, connections are treated first. (It should be noted that
one Context can be connected to itself with any of these
methods just as easily as it can be connected to another.)

2

Figure 5: Ways of connecting Contexts

Connections
Connections are the familiar Pd cables used to connect ob-
jects together via native inlets and outlets. Context has one
inlet and one outlet for every toggle along its x-axis. Inlets
are used to start a Context and are all essentially the same;
outlets are synched to the pattern toggles. When a connec-
tion is made from x to y, a basic rule is formed: Context y
will start its cycle when toggle x fires. In fig 6, Context 1
cycles for one second and then starts Context 2, which cy-
cles and then starts Context 1, resulting in a loop. Turning a
toggle off suspends the rule and terminates the loop.

Figure 6: two Contexts connected to form a basic network

In fig 6 there are two Contexts, but any number may be
connected together in arbitrarily complex ways. The most
immediate result of connecting multiple Contexts into a net-
work is the fragmentation of a composition into its elements.
The user can assign a musical phrase to a particular Con-
text and then relate it to other phrases in a “physical” way,
patching in new sequences at any time. Phrases can be any
length, from a single note to an entire piece of music, and
connections can be broken as easily as they are made. This
makes composition very accessible. Context networks have
a very low “Premature Commitment” (Bellingham, Mulhol-
land, and Holland 2014), as users are not “forced to decide
on implementation detail before they would otherwise be
ready to” (Bellingham, Mulholland, and Holland 2014). 1

Commands
Connections allow one Context to trigger another by send-
ing virtual start messages. But it is also possible to send
commands other than start to control Context in differ-
ent ways. This happens when an outgoing message is di-
rected towards another Context and contains a command
from the Input Language, such as :x 4 (open the fourth
x-axis toggle) or :d 2 (set the cycle time to 2 seconds). In
this case, the events that Context sequences are not musical
events, triggering some sound, but meta-events aimed at al-
tering the network. Since meta-events can be incorporated

1In fact, it might be found that Context networks satisfy
Bellingham’s challenge for “structure-aware composition soft-
ware” (Bellingham, Mulholland, and Holland 2014).

into the composition itself, music generated with Context
can evolve in a structured way over time. This evolution can
unfold deterministically or randomly, at the user’s discre-
tion. This matches Eigenfeldt’s description of an “Adaptive
System” (Eigenfeldt et al. 2014), where “agents interact and
influence one another and behave in different ways over time
due to their own evolution” (Bellingham, Mulholland, and
Holland 2014). 2

Rules
Commands allow one Context to alter another using the In-
put Language. Rules perform the same type of alteration,
but only given the trigger of some predefined condition. A
rule is comprised of two elements: a condition and a con-
sequence. A consequence is any command from the Input
Language, while a condition is a Boolean expression which
is evaluated against the current Context state. For example,
a rule could demand that if more than two toggles are open,
then the cycle time will be increased by 1 second, or that
if the note C# is played, then toggle 1 will open. Rules are
determined textually, offering a high amount of complexity
and precision.

Rules allow effects (consequences) to propagate over a
network according to the state of its agents. In this way, a
Context network resembles the Cellular Automata (CA) ap-
proach, where behavior emerges from a grid of cells, each
of which depends on the conditions of adjacent cells to de-
termine its own state (Nierhaus 2009). Miranda has applied
CA to composition in his project CAMUS and CAMUS 3D
(Miranda, McAlpine, and Hoggar 1999).

“The composition process is modeled on pat-
tern propagation. . . As the composition progresses,
the patterns are subjected to certain transforma-
tions. . . according to the formal structures that the com-
poser has chosen for the work”. (ibid).

This kind of composition is similarly feasible in Context,
although Context differs from CA in two important ways:

1. Connections between Context’s ‘cells’ are programmable
in any way, rather than being confined to a grid;

2. Each ‘cell’ can take its own specific rule.

In this way, a Context network is seen to cover a larger do-
main than CA, as networks need not be homogeneous and
their cells can have individual identity.

Applications
Sequencing environments are well developed Context net-
works which may house an entire piece of music. Rather
than working within the confines of a DAW or other large
software suite, the Context composer designs her own se-
quencing environment according to her own taste and the

2This should not be confused with the evolution of genetic al-
gorithms and neural nets, since Context has no learning algorithm.
A Context network may modify itself in a systematic way, but it
cannot be trained (Lischka 1991). Learning algorithms are one op-
portunity for the future development of Context.

3

style of the composition. This section describes some pos-
sible sequencing environments which pertain to metacre-
ative music. Explanations accompany ‘pseudo-patch’ dia-
grams which could easily be followed to construct function-
ing Context networks.

Markov Chains
If a connection is made from a Burst toggle, the network
may become stochastic. The Pattern plays out as normal, but
when the Burst toggles fire at the end of the cycle, the out-
come is uncertain. By this property a Context network can
function as a Markov chain (Miranda, McAlpine, and Hog-
gar 1999), as in fig 7, where the Burst settings determine the
probabilities and the structure of the network determines the
order 3.

Figure 7: A Markov chain represented as a Context network,
and as a Directed Graph. Here, the x-axis represents the
Burst.

Markov chains are especially accessible in Context since
the network closely resembles the Directed Graph diagrams
that are often used to illustrate them (compare this to the
Transitions Table approach taken i.e. in Jam Factory (Zi-
carelli 1987)). Loy states that “Directed graphs embody [the]
sense of place and transition” within Markov chains (Loy
2006). Context networks are similarly intuitive to work with,
as the path is directly depicted and controllable by simply
opening and closing connections. In its representation of
Markov chains, Context will be seen to resemble Nodal (de-
veloped by Monash University), a software which “uses spa-
tial, directed graphs that are traversed in real-time by one or
more state-based agents”, giving users “the ability to struc-
ture and control processes in a compositional sense” (Mc-
Cormack et al. 2007). In fact, Nodal’s mapping of Markov
chains is more explicit than Context’s, given the intuitive-
ness of its GUI (viscosity in (Bellingham, Mulholland, and
Holland 2014)). However, Context has one inherent advan-
tage, in that the nodes need not be single notes. They are
musical phrases of any length, as determined by the Pattern.

Reactive Systems
Systems which respond in a spontaneous way to user input
(“Generative systems” in (Eigenfeldt et al. 2013)) are well
within the grasp of Context networks. To achieve diverse be-
havior, input from a MIDI source is routed in Pd and sent to

3Unfortunately, Pd does not allow for connections on the side of
an object. In order to allow for Burst connections, a special mode
in Context flips the position of the Pattern and Burst along the axes.
Thus, in fig 7, the Pattern lies on the y-axis, and the Burst on the x-
axis, contrary to the order described in Description of the Context
unit above.

various different starting points in a network. Alternatively,
Context rules can be written to distinguish one input from
another. From the various parallel starting points, the Con-
text network take the form of a series of terminating Markov
chains which respond to the input in various ways. The user
chooses whether or not the different channels converge to a
singles point, or remain distinct from each other. 4

Figure 8: Sketch of a reactive Context network

Interactive Systems
With interactive music programs,

“The computer responds to the performer and the
performer reacts to the computer, and the music takes
its form through that mutually influential, interactive
relationship” (Chadabe 1983).

This can be achieved in Context by designing extended net-
works which cycle and evolve indefinitely of their own ac-
cord. Interaction is then a sort of dialog, with both com-
poser and computer suggesting new ideas (Goodacre 2016).
A Context network structured in an organized hierarchy is
shown in fig 9. At the top is one Context which acts as a
master clock for the whole system and sets the tempo. Next
is a Context which defines a structure, say A B A C (if a
cluster of Contexts is used here, the structure may be multi-
layered). The structure is sent to various parallel channels,
where Patterns and Markov chains are used to create musi-
cal sequences based on A B and C (as described in Reactive
Systems). Before this, a gate distributes the messages, decid-
ing which instruments are active and which are silent. In this
configuration, the pattern, structure and channel assignment
of the music can all be defined by altering toggles, or can
evolve autonomously with Context meta-events. The com-
poser must decide how to respond to the new themes and
structures that develop. (A handy Undo feature can be built
into the Overlay which allows the user to quickly cancel any
unwanted changes).

Figure 9: Outline for an interactive Context network.

4Another relevant feature is the persistence variable in the Out-
put Language which performs arithmetic on incoming data, allow-
ing for melodies which play relative to a given starting note.

4

Collaborative Systems

Context networks are highly decentralized systems, and
there is no need for one Context to hold absolute authority
(as in fig 9). More organic, “messy” systems can be devel-
oped where separate channels are not distinct and may bleed
into each other so that the music is less predictable. It is also
possible for multiple users to control the same network col-
laboratively. Networks could be specially made to designate
control over certain elements to different users, and could
even incorporate audience input as a form of Distributed
Performance (Swift et al. 2009). This approach differs from
the contemporary Musebots (Eigenfeldt et al. 2014), NetPd
(Haefeli 2013) and Ableton Link (Brinkmann 2016) in that
the sequencing and sonification elements of the patch would
not be distributed between computers, rather there would be
one network with multiple access points. The implementa-
tion of a collaborative network has yet to be worked out, but
the point remains that Context is a promising tool for build-
ing custom collaborative and distributed sequencers.

Conclusions
It has been shown how Context successfully applies the
modular paradigm to sequencing, and how it marries linear
and non-linear elements in a single object. Individual Con-
texts functions as step sequencers, sample players, random
selectors, and a language for generative music (in fact, any /
all of these at once). Collectively, Context builds networks to
house complex compositions, incorporating algorithms and
stochasticity in any way. By programming multiple Contexts
and connecting them together, the user always has the free-
dom to decide how Context should operate and what type of
network to build. Eigenfeldt asks us to imagine

“a continuum between traditional praxis or perfor-
mance tools, and metacreations. At one end, the soft-
ware simply acts as a tool to be manipulated by the cre-
ator... On the other extreme, pure metacreations are au-
tonomous and proactive in their creative choices, and
require no human intervention once running” (Eigen-
feldt et al. 2014).

Context realizes this continuum (or at least part of it) as
a traversable axis. In designing a network, the user de-
cides the extent to which the composition is generative, au-
tonomous and non-linear. Perhaps more importantly, choos-
ing one point on this axis does not preclude choosing an-
other. A user can construct a network that is linear in one
place and non-linear in others, and jump between these var-
ious paradigms without any restriction. It is hoped that Con-
text will make algorithmic techniques more accessible to
composers and offer new possibilities for performance.

Acknowledgements
Matthew Barber, Julian Brooks, Tristan Chambers, Joe
Deken, Sunu Engineer, Andy Farnell, Alexander Harker,
Miller Puckette, Katja Vetter, the organizers of PDCon16,
and countless other members of the PD community.

References
Bellingham, M.; Mulholland, P.; and Holland, S. 2014. An analy-
sis of algorithmic composition interaction design with reference to
cognitive dimensions. The Open University.
Brandt, E., and Dannenberg, R. B. 1999. Time in Distributed Real-
Time Systems. International Computer Music Association.
Brinkmann, P. 2016. Ableton Link integration for Pure Data. Pro-
ceedings of the 5th International Pure Data Convention.
Chadabe, J. 1983. Interactive Composing: An Overview. Computer
Music Journal, MIT Press.
Cioslowski, J. 2011. Generative Sound Application. Aalborg Uni-
versity, Copenhagen.
Eigenfeldt, A.; Bown, O.; Pasquier, P.; and Martin, A. 2013. To-
wards a Taxonomy of Musical Metacreation: Reflections on the
First Musical Metacreation Weekend. Papers from the 2013 AI-
IDE Workshop.
Eigenfeldt, A.; Thorogood, M.; Bizzocchi, J.; and Pasquier, P.
2014. Mediascape: Towards a video, music, and sound metacre-
ation.
Goodacre, L. 2016. Structure, composition and the Context se-
quencer. Proceedings of the 5th International Pd Convention.
Haefeli, R. 2013. netpd - a Collaborative Realtime Networked
Music Making Environment written in Pure Data. Proceedings for
the Linux Audio Conference 2013.
Jenkins, M. 2009. Analog Synthesizers: Understanding, Perform-
ing, Buying. CRC Press.
Kreidler, J. 2009. Programming electronic music in Pd. Hofheim:
Wolke Verlag.
Lischka, C. 1991. Understanding music cognition: a connectionist
view. MIT Press.
Loy, G. 2006. Musimathics: The Mathematical Foundations of
Music (Volume 1). MIT Press.
Margulies, J. 2014. Ableton Live 9 Power!: The Comprehensive
Guide. Nelson Education.
McCormack, J.; McIlwain, P.; Lane, A.; and Dorin, A. 2007. Gen-
erative Composition with Nodal. ECAL.
Miranda, E.; McAlpine, K.; and Hoggar, S. 1999. Making music
with algorithms: A case-study system. Computer Music Journal,
MIT Press.
Nierhaus, G. 2009. Algorithmic composition: paradigms of auto-
mated music generation. Springer Science and Business Media.
Pinch, T. J., and Trocco, F. 2009. Analog days: The invention and
impact of the Moog synthesizer. Harvard University Press.
Puckette, M. 1996. Pure Data: another integrated computer music
environment. Proceedings, Second Intercollege Proceedings, Sec-
ond Intercollege Computer Music Concerts, Tachikawa, Japan.
Resch, T. 2013. Note∼ for Max, An extension for Max/MSP for
Media Arts and Music. 2013 NIME Proceedings.
Rothstein, J. 1995. MIDI: A comprehensive introduction. AR
Editions, Inc.
Swift, B.; Gardner, H. J.; Riddell, A. 2009. Distributed Perfor-
mance in Live Coding stuff. Proceedings of the Australasian Com-
puter Music Conference 2009.
Yadegari, S. 2003. Chaotic signal synthesis with real-time con-
trol: solving differential equations in PD, MAX/MSP, and JMAX.
Proceedings of the 6th International Conference on Digital Audio
Effects.
Zicarelli, D. 1987. M and jam factory. Computer Music Journal,
MIT Press.

5

