Solving adaptive game music transitions from a composer centred perspective

Samuel Gillespie and Oliver Bown
Faculty of Art and Design, University of New South Wales, Sydney, Australia
samuel.gillespie@student.unsw.edu.au
o.bownfunsw.edu.au

Abstract

Transitioning from one section of music to another is a
core problem for game music. As such, developing ap-
proaches to game music composition which can system-
atically execute a transition would greatly simplify the
complexity of a composer’s work. To answer this ques-
tion we have undertaken the composition and analysis
of a simple score, looking at the compositional tech-
niques utilised in points of transition. This practice-led
process is then used to inform the development of a
prototype system for the real-time generation of mu-
sic to accompany a game. The output of the generative
system is then compared to the human composed mu-
sic to further understand key features of musical tran-
sitions applicable to real-time systems. From this com-
parison, key features, such as tonality and contour, are
highlighted. The techniques used to manipulate these
features are explained in the course of discussing the
generative system. Through this research a greater un-
derstanding is developed of enacting musical transitions
in a generative system for game music.

Introduction

The topic of music in video games has received significant
interest and is already a fitting field for the application of
generative techniques (See Collins 2009). However multi-
ple writers raise the issue of usability of generative sys-
tems by the composer of a game’s soundtrack. Examples of
challenges include questions of conceptual understanding as
composers work with a non-linear series of events (Collins
2009) and the need to make effective use of a composer’s
time (Scott 2014). Professional composers working in the
industry also see a need for generative tools which are us-
able by composers (Weir 2015).

Additional challenges are also presented by the require-
ments of game developers, the primary being that a system
is consistent and secondly that such a process is manageable
as part of a game engine (Weir 2015, Collins 2009, Farnell
2007). Of these two significant concerns this paper will be
focusing on system consistency and will not directly address
performance.

This work is licensed under the Creative Commons “Attribution
4.0 International” licence.

This paper investigates important properties of well
crafted state transitions in video game sound tracks encapsu-
lated in an algorithmic approach for performing transitions
in real-time. To identify important properties a practice-led
process was employed, conducted by the first author, of writ-
ing music for video captures of game-play followed by re-
flections and analysis on the composed works.

One key feature identified in this process was a change of
pitch structure. To facilitate this process a systematic repre-
sentation of intervalic spaces was developed. The represen-
tational model draws heavily from contemporary discourses
in music theory in the vein of Lewin’s Generalised Musi-
cal Intervals and Transformations (Lewin 1987). In terms
of representing musical structure, Tymoczko’s development
of Lewin’s framework into a geometric model (Tymoczko
2011) will form the foundation of our representations. Com-
bined with this representation system a novel application
of rule constrained, probabilistic, counterpoint generation is
used to direct phrases and control chord choice.

The practice of composing scores for recorded footage
of games provides an opportunity to observe how a human
composer might approach problems with perfect foresight
of a player’s actions. While this is somewhat removed from
the context in which a video game’s sound track exists, it
provides an opportunity to examine effective treatment in a
near perfect knowledge setting. In this paper the transition
between states of combat and non-combat will be the pri-
mary focus.

Through applying a robust musical framework to the task
of creating generative music systems for games, this paper
aims to address the conceptual understanding of a composer
as a first step towards developing usable systems for com-
posers and consistent systems of generation which may be
well understood due to a systematic understanding of the
musical space in which they operate. To demonstrate this a
prototype system has been developed and will be used to
provide examples supporting the concepts outlined in this

paper.

Existing techniques

High-quality audio has been the expected norm in video
games for well over a decade now (Collins 2009). Despite
common audio formats such as WAV and mp3 only support-
ing sequential playback from sample to sample, many game

scores exhibit branching, layering and transitions which al-
low them to adapt to the current game state (Collins 2009).
Indeed the challenge of maintaining high quality audio while
pursuing adaptability has posed an immense challenge for
video games and audio designers (see Liebe 2013 and Far-
nell 2007). Evidence to this can be seen in the prevalent use
of easy to implement techniques, such as cross-fading (for
examples consider Skyrim, Bethesda Softworks 2011 and
Rebel Galaxy, Double Damage Games 2015, among oth-
ers). Prechtl argues that these cross-fades are clumsy and
aesthetically displeasing and has prototyped and examined a
dynamic transition system. His system performs linear inter-
polation between two Markov models to a continuous prob-
ability space between states (Prechtl 2016). Each state has
a parameter matrix which alters the chord selection matrix
and synthesis parameters. As such the space between two
states is a linear space consisting of a matrix of values be-
tween the two states. Within the limits of his system, we
can see an example of more involved a solution for creating
more fluid and dynamic cross-fades. However, as discussed
later, from exploring the creation of exemplar scores, some
important elements of an effective musical transition require
more clearly enunciated differences. As such there are de-
ficiencies in Prechtl’s system for realising structural func-
tions of game music. From this we can primarily understand
Prechtl’s system as contributing primarily towards concepts
of player interaction (see Richard Stevens and McDermott,
2015, for more on this area).

Contemporary audio engines do have alternative ap-
proaches for managing transitions, for example consider
Wwise’s transition segment system (Audio Kinetic 2016). A
composer can layer tracks and transitions to create a con-
vincing transition between two different cues. Fmod, an-
other popular game audio middle-ware, outlines a similar
system for managing branching and looping music (Firelight
Technologies 2016). The key difference between Prechtl’s
approach and what appears to be the predominant approach
to game music is, organising material by intrinsic properties
material, and a style of scripted transitions, respectively. In
Prechtl’s system the next chord depends upon the transition
of the current chord selected via the probability matrix of the
Markov model, which is altered by the game’s state (Prechtl
2015). In contrast the Wwise approach requires the com-
poser to directly manage the content of the transition (Au-
dio Kinetic 2016) which takes both time and consideration.
Additionally as the complexity of the score increases such a
hard coded system of transitions becomes rapidly more cum-
bersome to maintain; An unfortunate sign of an approach
which scales poorly for use in a dynamic system, due to
the rapidly increasing number of situations for which a tran-
sition must be specified. The limitations imposed through
organising a score through pre-determined transitions ap-
pears laborious and confining when compared to the promise
of systems utilising intrinsic properties of musical material.
However to their merit, they provide a system where a com-
poser maintains substantial control over how transitions oc-
cur, musically, in a game. As such, developing a stronger
understanding of which features are important to composers
when creating a transition is for the future of generative mu-

sic in games.

Challenges of complexity

In order to illustrate the issues of increasing complexity out-
lined above, we suggest a small example game and con-
sider how the soundtrack may be approached. For our ex-
ample let us consider a game where a player must solve
puzzles and defeat foes to traverse a maze. Let us assume
that the dungeon has been crafted with increasing difficulty
as players approach a final challenge. Each challenge is in a
unique room with its own characteristic aesthetic within the
aesthetic of the overarching game. Taking apart our initial
premise the game director can see that they need content for
at least puzzle and combat sections with an increase of dra-
matic tension as the player progresses. The first unknown
quantity with which we must deal is how long the player
may spend in each room of the dungeon, either in the chal-
lenge or perhaps exploring. While we have a relatively clear
guide of the overall dynamic structure, the fact that we do
not know how long a player will be present makes the struc-
ture of each room’s music problematic to plan. Traditionally
this problem is solved through various looping and layering
techniques or by playing for a fixed duration followed by no
music (Collins 2009).

Figure 1: Illustration of linear progression.

Through utilising generative algorithms in scoring rooms
we can build far more robust soundtracks (see Scirea et al.
2016 and Houge 2012). Another question that is unanswered
by the above brief is how a player may traverse from one
room to another. If the rooms are sequential in arrangement
we could utilise predetermined transitions from one cue to
the next (see Figure 1).

However if we imagine that each room connected to two
or more other rooms, as required for our maze, the amount
of transitions rapidly increases (see Figure 2).

This may be further complicated if the game generates
levels such that each time the game is played it would
have different sequences of connections between rooms (For
more on procedural content generation see Liapis, Yan-
nakakis, and Togelius 2014).

As shown through this small problem we can see that as
unknown variables increase, so too does the complexity of
dealing with them when relying on a more traditional, linear
conception, of music composition. The complexity then ei-
ther leads to a heavy workload for a composer or as is more
common, the use of naive techniques such as crossfading be-
tween sections. Given the growing demands on an end user
to maintain such a system of transitions, it seems feasible to
adopt alternative approaches which scale more favourably as
the number of unknown variables increases. The solutions

A > B
F €
c
| < G ™
A
D > E > H T

Figure 2: Illustration of maze progression.

presented by both Wwise and Fmod would fall within the
less favourable category.

From the above example we can begin to infer that is-
sues related to musical form, at its various levels, will be
relevant to developing systems for the generation of video-
game music. The dynamic nature of the timing of a player’s
interactions with a game make this a challenging task, as the
form may need to change in relation to the players actions or
in-action. In the following section we will being to unpack
some techniques a composer might use to transition from
music for one state to another and the forms used to do so.

Observations from human composed
transitions

In order to better understand approaches a human composer
might use to transition between non-combat and combat
game states, we undertook the task of composing a brief
score for a video capture of a game-play sequence. The
video game used was Rebel Galaxy (Double Damage Games
2015) and the game-play was captured expressly for this re-
search. To allow for the integration of a new score the in-
game music was muted via the games settings, leaving sound
effects and dialogue in the audio mix recorded with the in
game footage. From this practice lead inquiry we concluded
four effective techniques which where used in our created
examples to delineate between combat and non-combat sec-
tions.

As heard in the first example
//drive.google.com/file/d/
OBykcGYFSAweyVEVEdnRreFdTMWM/view?usp=
sharing), showing a transition from non-combat to
combat states, there is a change in instrumentation, tonal
structure, tonal centre and tempo. The instrumentation
transitions from a softer synthesizer pad and arco cello to
heavier synthesised bass and marcato violins. The drum
rhythm also changes when in a combat state, and carries
the accelerando from 80bpm up to 144bpm. Tonality is

(https:

used in two ways to contrast the two sections. The tonal
centre moves from an F up to a C which emphasises
the lydian tonality of the non-combat section against the
predominantly aeolian character of the combat scoring.
Additionally we can consider the change in gestures from
the smooth flowing character to a sharper more accented
character. In many ways this change in character is related
to the change in tempo as it supports the change in pace.

In the second example (https:
//drive.google.com/file/d/
0BykcGYFSAweya3dLMFVVZnNsM1E/view?usp=
sharing) we notice similar techniques used to transition
out of combat, back to a non-combat state. This time we
hear the drums drop out completely and while the bass holds
a drone for a few bars we hear a bridging passage from the
cellos again. The piano is then joined by a choir in a more
amorphous tonal setting favouring E as a tonal centre. This
use of tonality as a foundation of form is rather Classical in
nature, resonating with similar motivations which drove its
stylistic development (see Rosen 2005, p. 43-53).

While various other techniques do exist for communicat-
ing structure, the four main differences outlined provide a set
of parameters to change when approaching a real-time gen-
eration context. As such, instrumentation, tonality (transpo-
sition and structure) and pace will be the varied parameters
of our prototype real-time generative system. The key chal-
lenges we then expect are questions such as how to maintain
direction across points of change and when to apply specific
changes to maintain a logic musical structure.

Prototype system design

The design of our prototype real-time scoring system utilises
the same captured footage from Rebel Galaxy (Double Dam-
age Games 2015) as our human composed scores. As shown
in figure 3 annotations have been created for the captured
game-play which specify at which frame an event, such as
entering combat, occurs in the game. The timing of these
events may not be identical to the timing of events in the
game however they are as close an approximation as can be
derived without access to the game internals.

Gameplay footage Replayer —> Game state module

\ 4

Music engine

l

Game audio
A > Synthesis engine

Annotated events

Figure 3: System design used to simulate a game environ-
ment.

The current implementation reacts to two game events,
combat started and combated ended. These events are con-

https://drive.google.com/file/d/0BykcGYFSAweyVEVfdnRreFdTMWM/view?usp=sharing
https://drive.google.com/file/d/0BykcGYFSAweyVEVfdnRreFdTMWM/view?usp=sharing
https://drive.google.com/file/d/0BykcGYFSAweyVEVfdnRreFdTMWM/view?usp=sharing
https://drive.google.com/file/d/0BykcGYFSAweyVEVfdnRreFdTMWM/view?usp=sharing
https://drive.google.com/file/d/0BykcGYFSAweya3dLMFVVZnNsMlE/view?usp=sharing
https://drive.google.com/file/d/0BykcGYFSAweya3dLMFVVZnNsMlE/view?usp=sharing
https://drive.google.com/file/d/0BykcGYFSAweya3dLMFVVZnNsMlE/view?usp=sharing
https://drive.google.com/file/d/0BykcGYFSAweya3dLMFVVZnNsMlE/view?usp=sharing

trolled by the replayer application which sends messages at
specified frames, according to the data file associated with
the video replay. From these two messages we can derive
the prototypes binary state, in combat and out of combat.
Upon receiving a message a set of actions are triggered such
as changing the pitch space, metric space, chord set and
audio parameter adjustment, see the section below for an
explanation of these terms. The changes result in the next
phrase segment being realised in the new space, changing
the tempo and tonality (see Figure 4). Instruments and ges-
tures are played based on the current state when the phrase
segment to which they belong starts playing. The original
game audio, recorded without music, is mixed back into the
final audio output, so as to most closely simulate the real
game environment.

Phrases calculate their next segment, according to the cur-
rent curve and pitch space while the current segment is being
played. This includes selecting a chord, however currently
instrumentation and gestures are selected when the phrase
segment is triggered by the phrase pulse metronome. In this
manner only the bare minimum is defined ahead of time,
leaving the system with a great level of flexibility to accom-
modate the change of environment.

Representational model

Tymoczko suggests utilising geometric representations to
model and constrain numeric relationships, such as inter-
vals, in a manner more in line with our intuitive understand-
ing of musical operations (Tymoczko 2009). The key con-
cepts important for our work are vector representation of
pitch structures, such as chords or melodies, and mapping
into metricised spaces, as a representation of scales. In line
with Tymoczko’s representations we will use pitch vectors
and interval vectors, metricised spaces will be expressed as
an expansion of a vector’s intervalic pattern.

Pitch vectors are defined as a finite collection of pitches,
more generally it is a representation of fixed points on a ra-
tional number line. Interval vectors are a finite collection of
intervals, as such they are relative to their surrounding pitch
content. As will be illustrated, such structures exist within a
geometric context which begins to establish their relevance
to the music they represent. These abstractions help to ac-
commodate generalised descriptions into the current context
of the music generation, such as a gesture to a scale.

Scales

Many musicians would be familiar with the interval vector
of the western major scale, 7 = [2,2,1,2,2,2,1] (often ren-
dered as T, T, s, T, T, T, s). Starting at O the pitch vector of the
major scale is thus p = [0,2,4,5,7,9,11, 12]. The intervalic
pattern laid out in the vector is expanded to become an infi-
nite metricised space. Accordingly for the metricised space
of p, we have the ordered set M where, My = 0, M7 = 2,
My =4, M3 =5 and so on, both ascending and descending
as per our major scale intervalic pattern. This vector format
is used for defining many elements of the generative system
including scales, chords and interval based rhythms.

Chords

The concept of mapping structures into other structures
can be applied to chords. Consider the pitch vectors
[0,2,4],[-2,0,3],[-3,-1,1,3],[0,2,4] (1,TV®, V7, 1). The
pitch vector representation above is unusual compared to
more common musical set theory notation (see Forte 1973,
p. 4-6 for an explanation of common practice) for two pri-
mary reasons. Firstly we have preserved the voice lead-
ings instead of immediately utilising pitch classes and sec-
ondly because we have recorded diatonic scales degrees,
not he standard chromatic values. However as we have al-
luded to above, we can map these pitch vectors into a
scale structure such as a major or minor scale. The re-
sult of mapping the above structure into a harmonic mi-
nor scale, built on a twelve tone equal tempered sys-
tem and preserving voice leadings, would then render as:
[0,3,7],[-4,0,5],[-5,-1,2,5],[0,3,7]. Through relying
on such a system of mappings we can express pitch struc-
tures in a diatonic context, yet understand their broader con-
texts, such as chromatic, without having to limit ourselves to
a specific representational context.

While scales commonly repeat at the sum of their interval
vector, chord intervals often do not sum to their repeating
interval. For example consider a major triad interval vec-
tor from 0 7 = [4,3], the sum of which Y7 = 7 suggests
that if we were to map a vector d = [0,1,2,3,4] into 7
the resulting vector @ — 7 = b = [0,4,7,11,14] which
assuming a twelve tone foundation turns our triad into a
pentad (see Figure 5). However if we assert that 7 repeats
around the interval 12 (the octave in our twelve tone sys-
tem) @ - (i § 12) = b = [0,4,7,12,16] our structure re-
peats around the octave, preserving it’s triadic nature (see
Figure 5).

Incorporating this information into our representation of a
chord allows us to use the chord’s definition to reason about
how gestures should be mapped to chords, even over multi-
ple octaves.

Phrase planning

Planning is an important aspect of music, and while plans
may change, without planning, music begins to lose direc-
tion. In the example compositions, the structure was already
known to the composer, however our system must operate in
a real-time setting. As such, to accommodate the variability
of duration in games, we have chosen to adopt an approach
to music featuring the planning of phrases by following a
projected curve. These curves are segmented and pitches are
fitted to them in a first species counterpoint inspired selec-
tion algorithm. By approaching phrases in this way we bal-
ance long term direction and flexibility.

Contrapuntal voice-leading generation

Considering species counterpoint in a computational cre-
ative context we could broadly classify it as a heuristic algo-
rithm, (for a detailed implementation see Schottstaedt 1984).
While the generation of counterpoint is of limited interest,
the structures generated from the process form a strong scaf-

Game environment [«

Start

v v

v

At rhythm A, ¢ emit

Combat state R 2 .
tick

—

Select phrase curve |« Yes N

v

On change update
spaces

-

Rhythm space

<

Pitch space

Select pitch limits by | No
curve B)

v

Select chord by limits

v

|

v

4 N

Await phrase tick End of phrase?

M
\ A

Select gestures and |

instruments » Schedule playout

Figure 4: Flow chart of system design.

p major triad expansion T 12
1" A

e T3]
A 1—8 T—¢ |
o 8 o |
DS i 11— i
J O S -

expansion $ 7

Figure 5: Chord expansion examples.

fold of musical structure. Our implementation is predomi-
nantly informed by the rules set out for first species counter-
point, defined as a note against note harmonisation featuring
no dissonant intervals (Swindale 1962, p.4-11). One notable
departure from species counter point is instead of compos-
ing a counterpoint to an existing melody, the cantus firmus,
we fit our counterpoint to an upper and lower curve. First a
pitch is selected for the upper voice. The pitch must sit along
the possible steps between the previous note and the direct
mapping of the next selected point on the upper voice phrase

curve. While leaps are a useful device for adding character
to a melody, here we are still creating a higher level structure
and as such a smooth step within the bounds of the curve is
desirable. For the lower voice smoothness is less of a con-
cern, so a gradually expanding search for a consonant pitch
is performed around the area of our last lower voice choice
and the next point along the lower curve. Through this pro-
cess a pitch structure is created adhering to the provided
rules of dissonant, consonant, and perfect intervals. From
this point chords can be selected which contain the upper
and lower pitches, setting up structural tones for the current
moment in the phrase.

By fitting notes to curves we can take an abstract structure
and realise it as a sequence of voice-leadings. Not only are
the contour of bass and treble lines established but through
selecting acceptable pitches for each voice, the complexity
of selecting chords is greatly reduced. Indeed if one were to
be working purely with triads this leaves only two possible

diatonic options for the third note. Building in the generated
scaffold structure we can start filling in details by fitting ges-
tures to our structure, rhythm and pitch space.

Scoring

With our systematic framework for intervalic spaces estab-
lished it is now possible to examine the process of scoring a
game’s soundtrack. The first step is to describe the spaces
which our tonalities and rhythms will populate. Next we
can begin creating gestures of melody, thythm and harmony
which are enacted within our sounding space. These gestures
could be created through a generative process, however cur-
rently they are manually defined.

Spaces

Spaces are structures, expressed as vectors, which define in-
tervalic relationships between numeric values. Examples of
what may be defined as a space include scales and pulse,
e.g. quaver groupings (see Gauldin 2004, p. 318). The term
space is adopted as conceptually elements such as motifs
and chord progressions exists within the context of scales
and pulse. Furthermore while keys may change within a pas-
sage, we can still be operating in the same space and as such
it is beneficial to possess a term for a background layer. Fol-
lowing from the above we can additionally relate spaces to
the concept of a state in a game environment.

Prototype spaces

In the prototype two spaces are defined which encapsu-
late the tempo for each space, one for combat, equivalent
to a tempo marking of minim = 144 and one for peace-
ful states equivalent to minim = 54. The pitch space for
combat expresses an octatonic scale, an eight note scale,
[0,2,3,5,6,8,9,11,12] (see Gauldin 2004, p. 739) and
peaceful states are set in a pentatonic scale, five notes,
[0,2,5,7,9,12].

When the prototype receives a change of state, combat to
peaceful or peaceful to combat, the pitch and tempo spaces
are changed to their corresponding space. Any gestures are
then rendered according to the intervalic layout of their new
space (see figures 6, 7 and 8).

In addition to two tonal spaces there are corresponding
chord sets for each state. The chord sets are mapped into
the current pitch space when play-out is scheduled (see Fig-
ure 4) as such the chord sets can be applied to any pitch
space however not all chords may be desirable in any space.

Through the definition of spaces, chord sets and gestures
a score can be generated in real-time, fitted to the voice-
leading structure generated from the contrapuntal curve fit-
ting. Following generation the score can be synthesised and
mixed into the rest of the game’s audio.

Results of prototype system

The results of the prototype system perform well in transi-
tioning from one state to the other. Within the context of the
music’s function of communicating the change from peace
to combat and the reverse, the output of the system clearly
delineates these sections. This base level off functionality

14

12

10

== Pitch pattern
=4 Pitch (12-tone) —~ Octatonic
Pitch (12-tone) — Pentatonic

Pitch

Figure 6: Example output from mapping a pitch pattern
(blue) into different scale structures (yellow and red). See
Figure 7 and Figure 8 for notation of pentatonic and octa-
tonic mappings.

Figure 7: Notated version of pentatonic mapping shown in
figure 6.

is achieved through applying the principals gathered from
the compositional studies, utilising parameters of tonality,
instrumentation and pace to realise this effect.

For example, in the output of the proto-
type transitioning from non-combat to combat
(https://drive.google.com/file/d/
OBykcGYFSAweyWnJ4bHY2S00xbkk/view?usp=
sharing), although perhaps not as refined as the human
composed examples (Section Observations from human
composed transitions), there is a distinct change in score as
the player switches into combat. Unlike in the human com-
posed example, the tempo change is a hard jump as the next
phrase segment is reached. However given that we do not
have a very active rhythmic texture an accelerando would
likely go unnoticed. Instead, in the generated examples, a
more prominent use of audio effects is used to build the
current phrase segment towards the upcoming change. The
change in timbre has the additional benefit of somewhat
linking between the change in instrumentation, which
for this limited prototype was a predetermined selection.
Although there is a hard transition between one pitch space
to the next, the transition is relatively smooth as due to the
nature of the phrase and chord algorithm, chordal voice
leadings progress as smoothly as possible, even across pitch
spaces.

Leaving combat, (as shown here:
https://drive.google.com/file/d/
OBykcGYFSAweyalNaaWh2dXFtNms/view?usp=
sharing) is rougher than the human composed example,
however a sense of consistency is still maintained. In
the moments before the combat ends, the phrase begins

https://drive.google.com/file/d/0BykcGYFSAweyWnJ4bHY2S00xbkk/view?usp=sharing
https://drive.google.com/file/d/0BykcGYFSAweyWnJ4bHY2S00xbkk/view?usp=sharing
https://drive.google.com/file/d/0BykcGYFSAweyWnJ4bHY2S00xbkk/view?usp=sharing
https://drive.google.com/file/d/0BykcGYFSAweya1NaaWh2dXFtNms/view?usp=sharing
https://drive.google.com/file/d/0BykcGYFSAweya1NaaWh2dXFtNms/view?usp=sharing
https://drive.google.com/file/d/0BykcGYFSAweya1NaaWh2dXFtNms/view?usp=sharing

Figure 8: Notated version of octatonic mapping shown in
figure 6.

descending down and lands on a final chord played by the
synthesized peaceful state timbre. Following this we have a
small breath before picking up again in the peaceful state,
starting strongly from the last chord into it’s new phrase.

All of these musical effects are achievable with current
common practice, however as discussed above this would
be a case of manually creating these transitions. In contrast
here we have a system which through a change of parame-
ters on a given event, generates this behaviour in real-time.
This parameter based generation sets this system apart from
common practice approaches and with further development
could provide an alternative approach for composers and
game designers.

Summary

The prototype system developed in this research demon-
strates its ability to perform transitions between states in
real-time. Built upon a systematic approach to intervalic
spaces, states can be defined by these spaces and, as they
utilise a common foundation, changing from one space to
another can be done smoothly. Furthermore through project-
ing structural aspects of phrase contours elements of har-
mony can be selected with a logic as to the direction the mu-
sic is required to take. The combination of these two tech-
niques provides a strong foundation upon which the proto-
type system is built.

There is still much work to be done in regards to impor-
tant questions such as how composers might interact with
the system, such as developing a capacity for the system to
learn features, for example phrase contours, from examples
provided by a composer. Given the use of conceptual mod-
els, such as spaces, chord set and gestures, this system does
move towards being approachable for composers. Addition-
ally, the problem of consistent results is also partially ad-
dressed through this conceptual framework as, although the
output varies as different chord possibilities are utilised, they
are still from a controllable set and operate in a defined pitch
space. As such providing a complex but finite set of possible
outputs from the system.

Future avenues of enquiry involve expanding the number
of states to explore how music for complex game structures
might be made less complex for composers. As mentioned
above how composers can use this system in a full game
production environment is still an open question. Further-
more, the application of additional generative techniques to
the creation and or variation of gestures and phrase struc-
tures appears to be a logical extension of the current sys-
tem, allowing for greater variation and perhaps more highly
integrated interaction with the detailed state of a game en-
vironment. Finally listener surveys are planned and will be

utilised to provide a broader reference of the systems musi-
cal qualities and performance in tasks such as transitions.

Although relatively simple, the prototype’s ability to per-
form transitions through the manipulation of tonality, pace
and instrumentation addresses some notable challenges in
the real-time generation of music in video-games. It pro-
vides a promising foundation for further work on improv-
ing the expressive capacity of composers in the art of video
game soundtracks.

Acknowledgements

This research was carried out with support from the Aus-
tralian government in the form of an Australian Government
Research Training Program Scholarship.

References

[2016] Audio Kinetic. 2016.
2016.2.2.6022: working with
https://www.audiokinetic.com/library/edge/

Wwise help
transitions.

?source=Help &id=working with_transitions, accessed
18/03/2017.

[2011] Bethesda Softworks. 2011. The elder scrolls v:
Skyrim.

[2009] Collins, K. 2009. An introduction to procedural mu-
sic in video games. Contemporary Music Review, 28(1),
pp.5-15.

[2015] Double Damage Games. 2015. Rebel galaxy.

[2007] Farnell, A. 2007. An introduction to procedural audio
and its application in computer games. Audio mostly confer-
ence 1-31.

[2016] Firelight Technologies. 2016. Adaptive mu-
sic in fmod studio: Transition markers and logic.
http:/fwww.finod.org/adaptive-music-fmod-studio-
transition-markers-logic, accessed 18/03/2017.

[1973] Forte, A. 1973. The structure of atonal music, volume
304. Yale University Press.

[2004] Gauldin, R. 2004. Harmonic practice in tonal music.
2nd Edn, WW Norton.

[2012] Houge, B. 2012. Cell-based music organization in
tom clancy’s endwar. Demo at the AIIDE 2012 Workshop
on Musical Metacreation.

[1987] Lewin, D. 1987. Generalized Musical Intervals and
Transformations. Oxford University Press.

[2014] Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2014.
Computational game creativity. In Fifth International Con-
ference on Computational Creativity.

[2013] Liebe, M. 2013. Interactivity and Music in Computer
Games. Springer Fachmedien Wiesbaden. 41-62.

[2015] Prechtl, A. 2015. A musical feature based ap-
proach to automatic music generation in computer games.
http://proceduralaudionow.com/anthony-prechtl-a-musical-
feature-based-approach-to-automatic-music-generation-in-
computer-games/, accessed 07/05/2016.

[2016] Prechtl, A. 2016. Adaptive music generation for com-
puter games. Ph.D. Dissertation, The Open University.

[2015] Richard Stevens, D. R., and McDermott, D. 2015.
Extreme ninjas use windows, not doors: Addressing video
game fidelity through ludo-narrative music in the stealth
genre. In Audio Engineering Society Conference: 56th Inter-
national Conference: Audio for Games. Audio Engineering
Society.

[2005] Rosen, C. 2005. The Classical style: Haydn, Mozart,
Beethoven. New Edn, WW Norton & Company.

[1984] Schottstaedt, B. 1984. Automatic Species Counter-
point. CCRMA, Stanford.

[2016] Scirea, M.; Togelius, J.; Eklund, P.; and Risi, S. 2016.
Metacompose: A compositional evolutionary music com-
poser. Evolutionary and Biologically Inspired Music, Sound,
Art and Design 202-217.

[2014] Scott, N. 2014. Music to middleware: The growing
challenges of the game music composer. In 2014 Conference
on Interactive Entertainment, 1-3.

[1962] Swindale, O. 1962. Polyphonic Composition. Oxford
University Press.

[2009] Tymoczko, D. 2009. Generalizing musical intervals.
Journal of Music Theory, 53(2), pp.227-254.

[2011] Tymoczko, D. 2011. A geometry of music: harmony
and counterpoint in the extended common practice. Oxford
University Press.

[2015] Weir, P. 2015. Never ending music.

http://proceduralaudionow.com/paul-weir-never-ending-
music/, accessed 06/05/2016.

	Introduction
	Existing techniques
	Challenges of complexity
	Observations from human composed transitions
	Prototype system design
	Representational model
	Scales
	Chords

	Phrase planning
	Contrapuntal voice-leading generation

	Scoring
	Spaces
	Prototype spaces
	Results of prototype system

	Summary
	Acknowledgements

