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Abstract

A modular framework for musical metacreativity
(MUME) promotes several desirable attributes of
MUME systems, namely opportunities for model reuse,
collaboration, and focused debate on subproblem so-
lutions. We argue that hierarchical Bayesian program
learning (HBPL) is an ideal framework for MUME sys-
tems because of its ability to effectively learn by modu-
larly decomposing concepts into independently-learned
subconcept models. We illustrate how the framework
can be used to model music composition. Because sub-
concept models represent musical constructs, the lan-
guage of the framework can be used for articulating and
comparing different perspectives of the music composi-
tion process. We use the framework to examine differ-
ing perspectives on the relationships between the con-
cepts of harmony and melody and between melody and
lyrics.

Introduction

Many aspects of music are modular and there is significant
commonality in the subsystems required for implementing
musical metacreativity (MUME) systems across genres or
problem domains. Although new systems in MUME often
reuse and develop upon ideas or “approaches” presented in
previous systems, the reuse of specific subsystem models
(trained or untrained) is rare. For example, models of har-
monic progression are frequently used in systems ranging
from classical to jazz to pop music, however even systems
within these domains (let alone between them) reimplement
these models time and again. Of course model parameters
may be different for each domain, but a general concept of
what harmony is and how it relates to composition is at some
level the same across domains. The dominant-tonic cadence,
for example, may occur with different frequencies or in dif-
ferent places in jazz than it does in classical; however the
definitions of dominant, tonic, and a dominant-tonic cadence
largely remain the same. It is important to clarify that in-
dependent of which models are reusable across systems, at
least some such models do exist. Having models that can be
reused, potentially with a set of possible domain-specific pa-
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rameterizations would be a valuable resource for the MUME
research community at large.

MUME systems stand to benefit from code and model
reuse for multiple reasons. Most obviously there are signif-
icant time and energy savings to reusing existing models.
Perhaps most significant, however, is that through their reuse
such models undergo iterative improvements, resulting in re-
fined models that lay a foundation for being able to do more
effective research using these models.

Given the apparent advantages to model reuse, why is it
not more widely observed? We first discuss two ideas chal-
lenges to model reuse. We then devote the remainder of the
paper to presenting a framework that addresses these chal-
lenges. We demonstrate how having such a framework fa-
cilitates meaningful discussion and reuse of submodels of
musical metacreativity.

Modularization

Modularizing systems encourages both reusing modules de-
veloped for the modularized system and reusing the sys-
tem with replacement of specific modules. For example, a
MUME system may have a very powerful model for gener-
ating melody. Modularizing the system so that the melody
model can be easily repurposed encourages its reuse. Alter-
natively, a MUME system may have a weak model for gener-
ating melody, but is otherwise a very effective system. Mod-
ularizing the system so that an alternative melody model can
be either developed de novo or reused from another existing
system also encourages reuse. In both cases, modularization
allows the best of multiple systems to be recombined to cre-
ate potentially better systems of musical metacreativity.

A challenge, however, is deciding how and at what level
modularization should take place. At the highest level of
modularization, a complete MUME system has limited
reusability. For example, there are a limited number of novel
systems that can be developed from reusing a system like
SMUG (Scirea et al. 2015) that generates lyrical music in-
spired by academic papers. However, the lower-lever sub-
model used within SMUG to generate melody (as a combi-
nation of pitch and rhythm), is likely reusable in developing
novel systems.

Focusing on lower level modules has two distinct bene-
fits: first, lower level modules affect MUME systems across
a greater breadth of sub-domains; and second, lower level
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Figure 1: The pyramid shows examples of concepts at dif-
ferent levels of modularization. The highest level modules
represent full-functioning MUME systems (e.g., SMUG
(Scirea et al. 2015) and M.U. Sicus-Apparatus (Toivanen
et al. 2013)) which are composed of lower level modules
and have more narrow applications. Lower level modules
represent subconcepts that are more broadly applicable and
are foundational to more complex concepts. A modular ap-
proach to building MUME systems focuses on developing
(potentially reusable) models at multiple levels.

modules represent an important foundation for building ef-
fective higher-level modules (see Figure 1). Focusing on
these lower level models provides a way for the MUME
community to share knowledge and build fundamental mod-
els of music that can then be used to improve domain-
specific systems.

Often it may seem that different musical viewpoints (e.g.,
pitch, rhythm) are too interdependent to allow effective
modularization of a system. While this certainly poses a
challenge, models need not be independent in order to be
modularized. For example, a model of melody conditioned
on harmony is very valuable even without a model of har-
mony.

Lingua Franca

Some existing MUME systems which do take modular ap-
proaches discourage reuse due to communication barriers.
Effective reuse requires knowing when and how a model can
be reused. While precision is important for evaluating the
suitability of a model for reuse, extensive mathematical for-
mulations sometimes deter system designers from investing
the time required to learn how and if to use prebuilt models.
On the other hand, some models are described in insufficient
detail, making it impossible to determine what assumptions
the model makes or how it is to be used.

Beyond failing to understand a specific model, there is
a general need for a language, a framework, and a cul-
ture that encourages and facilitates model reuse. While we
share the language of music and the language of computa-
tional science, neither language represents a framework for
discussing the higher-order elements of composition/song-
writing. As such, many new systems inadvertently create
novel frameworks in addition to presenting new ideas. This
lack of a consistent framework can make it difficult to iden-
tify and interpret reusable models. More generally, this lack
of a common language limits our ability to join in construc-
tive, communal discussion, making it difficult to engage in

a persistent dialog about the relative effectiveness of differ-
ent (reusable) models or how models can be most effectively
combined in new systems.

Hierarchical Bayesian Program Learning

The purpose of this paper is to propose a framework that ad-
dresses these challenges and initiate a discussion about some
aspects of MUME using the framework. The framework we
are proposing is the hierarchical Bayesian program learning
(HBPL) framework (Lake, Salakhutdinov, and Tenenbaum
2015). As applied to music, HBPL describes a hierarchy
of probabilistic models that are designed to learn the sub-
concepts that make up musical composition. By empirically
learning subconcepts, the aggregate model is then able to
comprehend examples of composition beyond those seen in
training.

The framework’s potential for learning complex concepts
was recently demonstrated on hand-written characters. In
Lake, Salakhutdinov, and Tenenbaum’s model, a character
type ¥ is learned as a product of learning distributions for the
number of strokes « per character, the number of substrokes
n; per stroke, the substroke shape S;, and the relationship
R; between strokes:

P(v) = P(x) HP(ni\m)P(Siﬁ, n)P(Ri|Sv, s Si1).

As demonstrated in this example, an HBPL model defines
a joint distribution over some class of artefact as a factor-
ization into probabilistic distributions representing subcon-
cepts. By learning each of these subconcepts individually,
the model was shown to achieve human-level concept learn-
ing in tasks such as one-shot classification, parsing, and gen-
eration.

Defining A Composition

By its nature the HBPL model necessitates defining the con-
cepts to be modeled in terms of constituent subconcepts.
Because this essentially represents manually incorporating
high-level knowledge about music composition into the sys-
tem, this process of defining can be both a strength and a
weakness. If done effectively it results in a very powerful
model (as demonstrated by Lake, Salakhutdinov, and Tenen-
baum (2015)). If done poorly it limits the learning ability of
the system. Although there are likely few who would con-
test the manner in which Lake, Salakhutdinov, and Tenen-
baum defined hand-written characters, there is likely to be
more disagreement about how music composition should be
defined. One advantage to the HBPL framework is the op-
portunity to engage MUME researchers and musicians alike
in this debate, not simply to converge on a single definition,
but to examine and compare several.

At the highest level we must define the concept of music
composition itself. It is significant to note that the model
of character types presented by Lake, Salakhutdinov, and
Tenenbaum was designed to learn characters generally and
not to cater to any specific language or context (though it was
shown to be capable of modeling different alphabets). By



analogy whatever our definition for composition' it must be
comprehensive enough to include jazz, classical, pop, hand-
bell choir, a cappella, and any other type of music compo-
sition. Our definition should be such that the difference in
composition between domains can be expressed as a func-
tion of the submodel parameters.

A composition is typically defined in terms of viewpoints.
For example, Conklin and Witten define a chorale as a “dis-
crete event sequence” with each event representing the view-
points of pitch, key signature, time signature, fermata, start
time, and duration (1995). Pachet and Roy define a jazz lead-
sheet as consisting of “two ‘parallel” sequences: one that
contains chord labels and one that contains notes” (2014).
Bodily, Bay, and Ventura similarly define a lyrical composi-
tion as consisting of three parallel sequences: one for chord
labels, one for notes, and one for lyrics (2017). Cope’s EMI
is a notable example of a non-linear model of composition,
but which nonetheless focuses on the recombination of pat-
terns in the viewpoints of pitch and duration (1989).

These examples suffice to demonstrate that although a
composition is often defined using multiple viewpoints,
models vary widely as to the specific viewpoints they con-
sider. We thus define a universal distribution over composi-
tions y as

P(y) = P(V1)P(V2|Vi), .., P(Vi [V, oy Vi 1)

where U = (V4,...,V},) represents the set of all possible
viewpoints that can be defined for a composition. Put sim-
ply: a composition is a factorable distribution over view-
points. Given this definition, we make a few important ob-
servations.

First, by Bayes’ Law the exact ordering of dependencies
between viewpoints is (at least in theory) unimportant to
modeling P(v). For example, for a composition " which
defines two viewpoints, V; and V5:

P(') = P(Vi)P(V2|V1) = P(V2) P(V1|V2).

The point to be made here is that to the extent that subcon-
cept models are accurate, the exact factorization of P(v’) is
irrelevant. In practice we make independence assumptions in
an effort to compensate for data sparsity. This results in only
approximative subconcept models with the choice of factor-
ization resulting in different approximations of the joint dis-
tribution. Thus how we factor becomes an important part of
the discussion of how hierarchical models should be struc-
tured.

Second, different types of composition which recognize a
subset of viewpoints S C U can be derived from composi-
tions which recognize a larger subset of viewpoints S’ (s.t.
S C S’ C U) by marginalizing over variables V; € S’ — S.
For example, a specialized composition 7' which defines all
viewpoints V; € U except the viewpoint V; is derived from

'By composition we refer to the symbolic representation of a
musical piece
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Figure 2: Modularizing with reuse. (a) Three different mod-
els of composition defined according to their constituent
subconcept models (each unique subconcept has a unique
color). (b) The same three models of composition defined
using common subconcept models. This overlap suggests
opportunities for reuse and collaboration.

the universal distribution P(+y) as follows:
PO = [ PO
Vi

= [ PV)P(Va|V1),.... P(Vi |V, ., Vio1)d Vi
Vi

= P(%),,P(Vnﬂé,,vn,l)

As a more concrete example, consider that a definition of
jazz leadsheets which defines viewpoints of harmony, dura-
tion, and pitch can be derived from a definition of pop lead-
sheets which defines viewpoints of harmony, duration, pitch,
and lyrics by marginalizing over lyrics. In simple terms, an
effective model built for pop leadsheets could be repurposed
to build jazz leadsheets by ignoring lyrics and retraining pa-
rameters for jazz composition. In general this suggests that
there are often ways of converting existing models from one
to another through conditioning and marginalizing over vari-
ables. This observation is valuable because it suggests there
are likely many ways in which existing models can be mod-
ularized to allow their submodels to be reused for novel sys-
tems or purposes (see Figure 2).

Third, note that there is also another implication for
reusable models: two specialized compositions ~" and ~”,
despite marginalizing over subsets S’ and S” s.t. neither is a



strict subset of the other, may have overlapping factors so
that a conditional model for the viewpoint V; in the fac-
torization of 4/ is similarly required and conditioned in ~".
Consider that Conklin and Witten’s model of Bach chorales
includes models of pitch and duration that could be reused
as a submodel for modeling lyrical composition or jazz com-
position (see Figure 2).

We reemphasize that we are nor suggesting that the
trained pitch model of Conklin and Witten built for Bach
chorales can be reused as is in a system that models pop or
jazz leadsheet composition. It is probable that some retrain-
ing of parameters on data more representative of the subdo-
main will be necessary. But the definition of the pitch model
can be reused between different domains. As a very simple
example, consider a model of pitch that is approximated us-
ing a single-order Markov model. This clearly represents a
model of pitch that could be (and has been) reused (with dif-
ferent parameters) in several subdomains. So likewise one
might imagine more complex approximative models being
reusable to represent common subconcepts.

There exists some tendency on the part of individuals
in both in the world of music and in the world of musi-
cal metacreativity to elevate some types of music as being
intrinsically more sophisticated or valuable and to ignore
any but those models and contributions belonging to one’s
own subdomain of interest. While each is entitled to his
or her own opinion, the ability to reach beyond differences
and identify what these domains have in common holds the
promise to more efficiently achieving our mutual goals. Mu-
sical metacreativity relies on the ability of systems to firmly
grasp very simple concepts in music, concepts which are of-
ten not domain-specific, concepts which though simple need
to be modeled and evaluated thoroughly. There is a great op-
portunity for musical metacreativity designers to collaborate
in modeling fundamental aspects of music that can then be
used as a common knowledge base from which to build more
complex, domain-specific systems.

As has been demonstrated, the challenges posed by imple-
menting systems using an HBPL model in actuality repre-
sent very concrete opportunities for debate, discussion, and
research about

1. how to identify and define simple, reusable musical con-
cept models;

2. how to create more complex concept models from simpler
subconcept models;

3. how well different implementations serve to approximate
a specific subconcept; and

4. how to encourage and classify contributions to MUME
research along a spectrum of domain-specificity ranging
from fundamental submodels of general music concepts
to more aggregate models of (potentially genre-specific)
musical concepts.

In short, such a framework helps orchestrate a combined ef-
fort to discover subconcepts in music whose definition we
can usefully agree upon. Initially these are likely to be fairly
fundamental subconcepts, whose definition may then facili-
tate defining more aggregate concepts.

Model of Lyrical Composition

To demonstrate the process of defining a specific type of
composition using the HBPL framework, we consider the
problem of modeling lyrical composition.

Figure 3 shows one possible hierarchy for defining a
pop leadsheet using the HBPL framework. There are sev-
eral things to note about this figure. The graph represents
valuable domain-specific knowledge. Although some of the
concepts and dependencies (shown as arrows) may be de-
bated, such a hierarchical model provides an excellent start-
ing point for talking about what a concept graph of pop
leadsheet composition should look like, and we hypothe-
size that some evolution of this graph is likely to be very
effective at producing pop music. Many of these are con-
cepts that are very intuitive and are modeled in many dif-
ferent MUME systems. Note that the bottom layer repre-
sents primarily concepts that are fundamental to many gen-
res of music and/or literature. Defining a pop leadsheet in
this manner also helps to initiate a discussion and compara-
tive analysis of possible implementations for approximating
each individual subconcept.

We now explore a few examples of the type of discussions
that we hope to see emerge from models like that shown in
Figure 3. We discuss the motivation for including the con-
cepts of Global Structure and Segment Structure. We then
discuss the intuition behind two dependence relationships in
this graph that were significantly debated in the construction
of this model.

For the purposes of our discussion, we define a simplified
HBPL model of the conditional distribution on compositions
~ as follows

P(y) = P(r)P(n|r)P(ulm,n) PN, 1) (D)
where the variables 7, 1, u, and )\ respectively represent

the composition’s structure (global and segment-level), har-
mony, melody, and lyrics?.

Structure

Though not representative of concrete viewpoints of com-
position, structure (e.g., verse-chorus segmentation, thyme
scheme, etc.) is a concept so frequently discussed in associ-
ation with pop leadsheets that it becomes inconvenient not
to explicitly model it. This represents an additional strength
of the HBPL model, namely that composition can be ex-
plicitly modeled in terms of any relevant concept, including
concepts such as inspiration and intention (Bodily, Bay, and
Ventura 2017).

Several attempts have been made to learn to generate
music without explicitly modeling structure (e.g., (van den
Oord et al. 2016)). Although these systems are often able
to generate small windows of realistic sounding music, on
the whole they lack the structure needed to create broader
cohesion.

We further decompose our model of structure as

P(r) = P(Q)P(a]C),

2 An implementation of this model is described in (Bodily, Bay,
and Ventura 2017). Compositions generated from this implementa-
tion are available online at popstar.cs.byu.edu
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Figure 3: A graphical model of one possible hierarchy for defining a pop leadsheet using the HBPL framework. Each node
represents a concept or subconcept model used to define pop leadsheet composition. The vertical layers in the graph correspond
roughly to the levels of modularization shown in Figure 1. An arrow from a node A to a node B represents that B is conditioned

on A. As is needed for an HBPL model, no circular dependencies exist. The model is sampled from the bottom up.

where P({) = distribution over global structure ¢ and
P(o|¢) = distribution over segment structure o given (.

Global Structure The dividing of the composition into
verse-chorus segments is represented in Figure 3 as Global
Structure. As an example of how we might implement a sub-
concept model, one way of modeling global structure is to
use a constrained Markov model. According to this model
P(() is factored into a distribution over the segment count
per song, P(|C]), and a single-order Markov model for seg-
ment sequences:

]
P(Q) :P(|<|)P(C1)HP(Q|C¢—1)-

=2

Using an unconstrained, unsmoothed Markov model for
P(¢;|¢;—1) may result in sequences shorter than || and may
end unnaturally (e.g., with a bridge). Using Pachet et al.’s
constrained Markov model we can guarantee the sequence
length and place additional constraints at specific positions

within the sequence. This modifies how we factor P(¢) by
conditioning ; on both the sequence position ¢ and the pre-
vious segment type (;—1:

I<|

P(¢) = P(|C|)P(41)HP(Q|’L}C¢—1)

=2
To generate, we sample a length from P(|¢|) and construct
a constrained Markov model of length |¢| using P(¢;[¢i—1)-
We also add a constraint that the song must end on an “end”
token.

This model does well at creating compositions that have a
reasonable number of verse-chorus segments and that start
and end appropriately. However, with only a single-order
Markov model underlying the constrained model, there is
likely to be some odd placement of segments within the
structure. For example, training data may contain examples
of a bridge following a chorus, but not generally the first
chorus. A single-order Markov model would have insuffi-
cient context to discriminate between chorus instances. Thus
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Figure 4: A visual representation of an empirically derived
probability distribution for a subconcept model of song seg-
ment rhyme structure.

it might be better to try a higher-order constrained Markov
model, some sort of generative grammar (e.g., (Steedman
1984)), or even some sort of recurrent neural network. These
are all likely to produce better global structures than the
model shown here.

This example serves to demonstrate how the modular-
ity of the HBPL framework facilitates focused compara-
tive analysis across implementations for a given subconcept
model.

Segment Structure As referred to in Figure 3, Segment
Structure refers to lyrical, melodic, or harmonic motifs and
rhyme schemes within a segment (e.g., verse). This struc-
ture can be essentially defined as a set of constraints C; on
various viewpoints of the composition at certain measure
and beat positions (Bodily, Bay, and Ventura 2017). Many
systems that use constraints require the user to define the
constraints (e.g., (Pachet and Roy 2014)). Using the HBPL
framework, we can create a model to learn the concept of
how constraints are defined. Figure 4 shows an example of
an empirically derived probability distribution over rhyme
constraints that might be used to approximate a subconcept
model of segment structure.

The major qualm we have with this model is that mo-
tifs not only exist within segments, but also between seg-
ments. Our current model samples a new C; for each seg-
ment type independently of all other segment types. For ex-
ample, chord patterns often repeat in the intro, outro, chorus,
and verse in ways that create global cohesion to the compo-
sition. A better model might condition the segment structure
of one segment on the structures of previous segments.

In general, modeling structure has proven to be one of
the more challenging and most interesting concepts to de-
fine. We hope to leverage community discussion and domain
knowledge to improve our models of global and segment
structure for future work.

Harmony and Melody

Figure 3 shows that the model of Melodic Pitch depends on
(among other concepts) Harmony Identity. This represents
the assertion (also reflected in Equation 1) that melody is
determined from harmony. Among those of our colleagues
who first reviewed this model, many asserted that this was a
backward assumption and that harmony is actually derived

from the melody. Presumably this notion was driven by the
prominent role that melody plays in identifying a composi-
tion. Systems have also been designed which generate har-
mony from melody (Chuan and Chew 2011).Thus we find it
meaningful to provide some defense for our assertion.

As noted above, whether melody p is conditioned on har-
mony 7 or harmony on melody is in theory irrelevant:

P(u,m) = P(u)P(nlu)
= P(n)P(uln);

the same model of harmonized melody is computable either
way. However, as also noted above, practice does not always
agree with theory. Consider if, in implementing melody, we
(naively) choose to use a 0-order Markov model such that
each note is sampled independent of the previous note. Con-
ditioning 7 on p in this manner would be akin to playing
random notes in sequence and then trying to determine a
chord from those notes. Conditioning 1 on 1 would be akin
to choosing a chord and then playing random notes from
the chord. Though neither is likely to produce a well-shaped
melody, the latter seems more likely to evoke a stronger
sense of musical cohesiveness.

Others have also supported this assertion. For example,
Papadopoulos and Wiggins assert that melody does not
stand alone and must be evaluated according to the “har-
monic context” (1999). This assumption also follows from
the definition of tonality, which designates that pitch is ar-
ranged around a contextual reference point (Hyer 2001).
Paiement, Eck, and Bengio note that harmony is depen-
dent on “chord structure... and on the surrounding chords,”
but make no mention of its dependence on melody (2005).
Dixon, Mauch, and Anglade also state that “since the highest
number of dependencies join at the chord variable, it takes a
central position in the network™ (2010).

This example demonstrates a few things. First, it demon-
strates HBPL models can be built which reflect the knowl-
edge of domain experts. Second, it demonstrates that a dia-
logue among these experts is important to being able to dis-
cover how such models should be effectively constructed.

Melody and Lyrics

Figure 3 shows that the model of Words depends on (among
other concepts) Melodic Duration. This represents the asser-
tion (also reflected in Equation 1) that lyrics are determined
from melody. This assertion is one that we have internally
debated for some time due to the complexity of the interac-
tion between these two viewpoints.

It is clear that there is some dependency between melody
and lyrics: in pop music, syllables usually correspond to
notes in the melody and vice versa. How melody and lyrics
depend on each other is more complex, particularly given
that MUME systems exist which create lyrics for melodies
(Ramakrishnan A, Kuppan, and Devi 2009) and melodies for
lyrics (Monteith, Martinez, and Ventura 2012). This com-
plexity may be what drives the common question posed
to song-writers: “which do you write first: the melody or
the lyrics?” Consider that the question is meant to gauge
individual styles of song-writing rather than inquiring as



to whether or not the song-writer adheres to a universally
agreed upon principle of song-writing. This means that dif-
ferent people successfully write music in different ways.
Answers vary from “always melody first” to “always lyrics
first” to “they come at the same time” to “it varies”, but each
answer reflects an effective model of how songs are written.

The fact that those who ask this question appreciate mu-
sic either way suggests that the order in which one writes
the melody and lyrics of a song is perhaps not important.
Furthermore, the fact that those who ask this question rarely
try to guess the answer suggests that the order in which one
writes the melody and lyrics of a song is not readily reflected
in the resulting composition. (Beyond its implications for
how to design a generative model, this represents an inter-
esting method for evaluating the effectiveness of an HPBL
model: a model is likely to be a more effective model if, like
human-written songs, listeners cannot accurately determine
the order in which lyrics and melody are generated.)

The HPBL framework is capable of modeling a system
that generates lyrics and melody in either order, but we have
found that when it comes to implementation there are a few
factors to be considered.

First, the general contour of the melody (e.g., “PACTs” as
presented by Pachet (1991)) is independent of the lyrics as
evidenced by the fact that such contour is consistent across
several verses with different lyrics (this is not to say that the
contour is not somehow dependent on the overall semantic
meaning of the song). This is the intuition reflected in our
assertion that the lyrics depend on the melody and not the
other way around.

However, the second factor to consider is that there are
multiple elements of melody that do depend on the lyrics.
This is essentially what is meant by the term prosody. Al-
though the contour of the melody may be independent of the
verse lyrics, the rhythm of the melody certainly depends on
the lyrics: the number of notes and syllables must agree and
the exact rhythm of notes is (at least in part) a function of
the stress patterns in the lyrics. Even the pitch of the melody
is occasionally modified to accentuate the semantic meaning
of the associated lyrics.

This example demonstrates that we must think carefully
about how we define the concepts that are used to define
an HBPL model. Some of these concepts (like prosody)
are powerful concepts for evoking the perception of creativ-
ity, but are not often incorporated into MUME systems be-
cause of the time required to (re)implement more fundamen-
tal concepts like harmony, melody, and lyrics. Establishing
a common framework like HBPL, by which to share not
just ideas but actual models of musical concepts, enables
researchers to focus efforts on how to combine and reuse
existing models, allowing more time to be devoted to incor-
porating other less-common, essential concept models. Mu-
sical Expectation (shown in Figure 3) is another example of
a powerful concept that we feel should see more wide use in
MUME systems (Meyer 2008).

HBPL: Reaching the boundary of Creativity

Let us return for a moment to the question posed to song-
writers: “which do you write first: the melody or the lyrics?”

This question inherently points to the idea that a song can
be decomposed into (at least) melody and lyrics. Further
delving into the nuances of song-writing would likely re-
veal further decomposition of even those concepts. For ex-
ample, with reference to the pitch contour of the melody,
a listener might ask, “how did you come up with that
melody?” Or when listening to the lyrics, a listener might
ask, “Do the words come first? Or does the meter/rhythmic
cadence/rhyme scheme for the words come first?” Song-
writers generally love to discuss these questions because
they have generally thought carefully about the answers and
enjoy seeing the listener pick up on the meaning and nuances
produced by the complex union of these decisions.

The ability to decompose a composition to any arbitrary
extent is one of the primary strengths of the HBPL frame-
work. In the effort to create systems that would be deemed
truly creative, the complexity that arises out of decomposi-
tion plays an important role. Hofstadter asserts that “mean-
ing cannot be kept out of formal systems when sufficiently
complex isomorphisms arise” even for “a system whose
complexity is pathetic, relative to that of an organic brain”
(Hofstadter 1980). At some point the complexity of the sys-
tem’s deliberate knowledge-based decision-making exceeds
the listener’s capacity to fully grasp, reaching a threshold
that might be said to represent the boundary of creativ-
ity/intelligence.

Discussion

With a few exceptions (e.g., (Chuan and Chew 2011)), we
have observed that despite being in high demand, pop mu-
sic has yet to garner significant interest within the research
community. We wish to briefly consider and address a few
of the reasons for why this might be.

First, there remains a strong stigma against pop music as
being inherently less musically sophisticated and therefore
less musicologically valuable to humanity. To dismiss what
is currently popular as being less sophisticated or less valu-
able than “the stuff of yore” is a cycle which has repeated
itself as far back as Mozart and as recently as with jazz mu-
sic. We stand to gain new insights into human and computer
creativity as we acknowledge and overcome our biases to-
wards certain creative expressions (particularly those with
as much cultural and psychological influence as pop music).

Second, the term pop music (deriving from popular mu-
sic) describes an eclectic variety of subgenres, depriving the
term of any easily definable characteristics. The ambiguity
inherent in defining pop music provides an essential chal-
lenge to algorithmic approaches in general, which tradition-
ally target and cater to problems with well-defined bound-
aries and examples. Models that generalize well in vast do-
mains with relatively few training examples are essential to
truly creative computational systems. As pop music has been
commonly used to include genres as diverse as rap, indie, big
band, broadway, and rock ’n’ roll, the attempt to characterize
models of popular music forces us to consider more gener-
alized models of creativity, which have increased potential
of having more cross-domain application and of aiding in
the discovery of novel subgenres of creativity (e.g., new pop
music subgenres).



Third, much of what lies within the domain of pop mu-
sic remains highly proprietary, making it difficult for re-
searchers to obtain access to sufficient data to train models.
The challenge of accessing high-quality pop music datasets
(whether acoustic or symbolic) is significant. There is a
dearth of well-annotated resources for those interested in
studying any or all of the aspects of pop music composition.
Besides being highly proprietary, artefacts in music gener-
ally require relatively complex representations and relatively
few possess the domain knowledge required to generate or
transcribe the needed data. There is, however, much we can
do to improve the situation. First, we need to make resources
that are available more accessible. Second, we need to es-
tablish a better case for how society and industries stand to
benefit from computational pop music research in order to
generate a productive dialogue for collaboration with those
in possession of large pop music datasets (e.g., (Bodily, Bay,
and Ventura 2017)). Third, we need to recognize contribu-
tions of novel datasets.

Conclusion

Hierarchical Bayesian programing learning is an effective
framework for modeling musical composition. By nature its
modular design encourages reuse and focuses design deci-
sions on artistic elements of the composition process. These
characteristics promote effective comparative analysis, itera-
tive progress, and collaboration of cross-domain researchers
and musicians in the development of MUME systems.

It was noted in the development of this research that the
complexity of a model like that shown in Figure 3 some-
what resembles that of a biological protein network. This
very apt description might serve to illustrate a vision for how
HBPL models might be fully leveraged to achieve true mu-
sical metacreativity: thousands of biology researchers, each
researching different protein-protein interactions, contribute
to a web of knowledge that represents a growing understand-
ing of the miracle of life. Likewise will our understanding of
the miracle of musical metacreativity unfold as we find ways
of uniting our focused, individual efforts in order to develop
systems that fundamentally comprehend the essence of com-
position.
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