MUME 2016 - The Fourth International Workshop on Musical Metacreation, ISBN #978-0-86491-397-5

MUS-ROVER: A Self-Learning System for Musical Compositional Rules

Haizi Yu! Lav R. Varshney?

Guy E. Garnett® Ranjitha Kumar!

!Department of Computer Science 2 Department of Electrical and Computer Engineering 3 School of Music
University of Illinois at Urbana-Champaign, Urbana, IL 61801
{haiziyu7,varshney,garnett,ranjitha} @illinois.edu

Abstract

Throughout music history, theorists have identified and doc-
umented rules that capture the decisions of composers. This
paper asks, “Can a machine behave like a music theorist?” It
presents MUS-ROVER, a self-learning system for automati-
cally discovering rules from symbolic music. MUS-ROVER
performs feature learning via n-gram models to extract com-
positional rules — statistical patterns over the resulting fea-
tures. We evaluate MUS-ROVER on Bach’s (SATB) chorales,
demonstrating that it can recover known rules, as well as iden-
tify new, characteristic patterns for further study. We discuss
how the extracted rules can be used in both machine and hu-
man composition.

1 Introduction

For centuries, music theorists have developed concepts and
rules to describe the regularity in music compositions. Ped-
agogues have documented commonly agreed upon compo-
sitional rules into textbooks (e.g., Gradus ad Parnassum) to
teach composition. With recent advances in artificial intel-
ligence, computer scientists have translated these rules into
programs that automatically generate different styles of mu-
sic (Cope 1996; Biles 1994). However, this paper studies
the reverse of this pedagogical process, and poses the ques-
tion: can a machine independently extract from symbolic
music data compositional rules that are instructive to both
machines and humans?

This paper presents MUS-ROVER, a self-learning sys-
tem for discovering compositional rules from raw music data
(i.e., pitches and their durations). Its rule-learning process is
implemented through an iterative loop between a generative
model — “the student” — that emulates the input’s musical
style by satisfying a set of learned rules, and a discriminative
model — “the teacher” — that proposes additional rules to
guide the student closer to the target style. The self-learning
loop produces a rule book and a set of reading instructions
that are customized for different types of users.

MUS-ROVER is currently designed to extract rules from
four-part music performed by single-line instruments. We
represent compositional rules as probability distributions

This work is licenced under Creative Commons “Attribution 4.0
International” licence, the International Workshop on Musical
Metacreation, 2016, (www.musicalmetacreation.org).

over features abstracted from the raw music data. MUS-
ROVER leverages an evolving series of n-gram models over
these higher-level feature spaces to capture potential rules
from both horizontal and vertical dimensions of the texture.

To evaluate MUS-ROVER, we train the system on Bach’s
(SATB) chorales (transposed to C), which have been an at-
tractive corpus for analyzing knowledge of voice leading,
counterpoint, and tonality due to their relative uniformity
of rthythm (Taube 1999; Rohrmeier and Cross 2008). We
demonstrate that MUS-ROVER is able to automatically re-
cover compositional rules for these chorales that have been
previously identified by music theorists. In addition, we
present new, human-interpretable rules discovered by MUS-
ROVER that are characteristic of Bach’s chorales. Finally,
we discuss how the extracted rules can be used in both ma-
chine and human composition.

2 Related Work

Researchers have built expert systems for automatically an-
alyzing and generating music. Many analyzers leverage pre-
defined concepts (e.g., chord, inversion, functionality) to an-
notate music parameters in a pedagogical process (Taube
1999), or statistically measure a genre’s accordance with
standard music theory (Rohrmeier and Cross 2008). Sim-
ilarly, automatic song writers such as EMI (Cope 1996)
and GenJem (Biles 1994) rely on explicit, ad-hoc coding of
known rules to generate new compositions (Merz 2014).

In contrast, other systems generate music by learning sta-
tistical models such as HMMs and neural networks that cap-
ture domain knowledge — patterns — from data (Simon,
Morris, and Basu 2008; Mozer 1994). Recent advances in
deep learning take a step further, enabling knowledge dis-
covery via feature learning directly from raw data (Bengio
2009; Bengio, Courville, and Vincent 2013; Rajanna et al.
2015). However, the learned, high-level features are implicit
and non-symbolic with post-hoc interpretations, and often
not directly comprehensible or evaluable.

MUS-ROVER both automatically extracts rules from raw
data — without prior encoding any domain knowledge —
and ensures that the rules are interpretable by humans. In-
terpretable machine learning has studied systems with sim-
ilar goals in other domains (Malioutov and Varshney 2013;
Dash, Malioutov, and Varshney 2015).

3 MUS-ROVER Overview

MUS-ROVER extracts compositional rules — probability
distributions over learned features — from both horizontal
and vertical dimensions of the texture. MUS-ROVER prior-
itizes vertical rule extractions via a self-learning loop, and
learns horizontal rules through a series of evolving n-grams.

3.1 Self-Learning Loop

The self-learning loop identifies vertical rules about sonor-
ity (a chord in traditional harmonies) constructions. Its two
main components are “the student” — a generative model
that applies rules, and “the teacher” — a discriminative
model that extracts rules. The loop is executed iteratively
starting with an empty rule set and an unconstrained student
who picks pitches uniformly at random. In each iteration,
the teacher compares the student’s writing style with Bach’s
works, and extracts a new rule that augments the current rule
set. The augmented rule set is then used to retrain the stu-
dent, and the updated student is sent to the teacher for the
next iteration.

This idea of “learning by comparison” and the collabora-
tive setting between a generative and discriminative model
are similarly presented in statistical models such as noise-
contrastive estimation (Gutmann and Hyvérinen 2010) and
generative adversarial networks (Goodfellow et al. 2014).
Both models focus on density estimations to approximate
the true data distribution for the purpose of generating simi-
lar data; in contrast, our methods do explain the underlying
mechanisms that generate the data distribution, such as the
compositional rules that produce Bach’s styles.

3.2 Evolving n-grams on Feature Spaces

MUS-ROVER employs a series of n-gram models (with
words being vertical features) to extract horizontal rules that
govern the transitions of the sonority features.! All n-grams
encapsulate copies of self-learning loops to accomplish rule
extractions in their contexts. Starting with unigram, MUS-
ROVER gradually evolves to higher order n-grams by ini-
tializing an n-gram student from the latest (n-1)-gram stu-
dent. While the unigram model only captures vertical rules
such as concepts of intervals and triads, the bigram model
searches for rules about sonority progressions such as paral-
lel/contrary motions. This paper only discusses unigram and
bigram models; however, higher order n-grams with wider
horizontal visions can be trained in a similar manner.

MUS-ROVER’s n-gram models operate on high-level
feature spaces, which is in stark contrast with many other n-
gram applications in which the words are the raw inputs. In
other words, a higher-order n-gram in MUS-ROVER shows
how vertical features (high-level abstractions) transition hor-
izontally, as opposed to how a specific chord is followed by
other chords (low-level details). Therefore, MUS-ROVER
does not suffer from low-level variations in the raw inputs,
highlighting a greater generalizability.

Tt potentially learns something about the rhythms, since the
transition model probabilistically tells whether to stay or to alter.

4 Unigram MUS-ROVER

Unigram MUS-ROVER and its self-learning loop treat every
individual sonority independently of their preceding one(s).
It learns the basics of single sonority construction in a choral
piece. Restricted by the independence assumption, horizon-
tal rules that describe sonority progression can only be cap-
tured in an n-gram for n > 2 (Section 5).

4.1 Musical Raw Representation

Given a choral piece, we analyze the symbolic representa-
tion of sheet music rather than a waveform representation of
audio. We only leverage the raw representation of the piece
— pitches and their durations — and no other higher-level
information (e.g., key/time signatures, modes, dynamics).
Hence, every choral piece is treated as multiple simultane-
ously emitting sequences of (discrete) pitch symbols.

We use integer-valued MIDI numbers as opposed to let-
ter names, so we can perform arithmetic operations such as
calculating the (piano) distance between two pitches in the
unit of semitones by subtraction. We restrict attention to a
finite set of MIDI numbers Q = {21,22, ..., 108}, estab-
lishing a bijection to the 88 piano keys: 21/108 to the left-
most/rightmost key (A0/C8) and 60 to middle C (C4).

We represent a four-part chorale as a four-row matrix X €
Q%N whose entries are MIDI numbers. The rows represent
the horizontal melodies in each voice: the 1st, 2nd, 3rd, and
4th row of X correspond to soprano, alto, tenor, and bass,
respectively. The columns represent the vertical four-pitch
sonorities, where each column has unit duration equaling the
greatest common divisor (gcd) of note durations in the piece.
For instance, if the choral piece is composed from quarter
notes and dotted quarter notes only (the gcd of these two
types of notes is an eighth note), then a quarter note C4 will
result in a sequence of repeated 60s spanning 2 consecutive
columns (3 columns for a dotted quarter note). The MIDI
matrix is all that is needed in the sequel, which is referred as
the piece’s raw representation.

4.2 Student: the Generative Model

The student is a probabilistic composer, which generates
chorales by sampling from a probability distribution. Its
composition gets probabilistically closer to Bach’s style via
more Bach-like distributions that are computed from apply-
ing compositional rules. The I/O of the student:

Input: a set of compositional rules;
Output: a probabilistic model.

4.2.1 Probabilistic Assumption We refer to the proba-
bilistic model of the student as the choral distribution P of
chorales in terms of MIDI matrices. This assumes that the
student composes every choral piece as a random sample
from P. Under an n-gram model, P factorizes as the prod-
uct of the (conditional) sonority distributions. Thus, learning
the student’s probabilistic model boils down to learning the
(conditional) sonority distributions.

To formalize in the unigram setting, consider the MIDI
matrix as a random variable X = [Xe1, -+ ,Xen] €
QN where X,; is the ith column of X, and N denotes

the length of the piece. Under the independence assumption
of unigram, the choral distribution factorizes as the product
of sonority distributions:

N
P(X) = HP(X.i)-

By stationarity, all sonorities follow the same probability
mass function (pmf) p : Q* — [0,1]. Unlike the infinite
sample space of P, the sample space of p is discrete and fi-
nite, with size d = |Q*| = 88 If we impose an ordering in
its sample space, p can be represented as a vector that lies in
the d-dimensional probability simplex,? A

4.2.2 Learning Sonority Distribution (p) The sonority
distribution p is computed from a set of compositional rules.
To constrain the student by the current rules while also
providing encouragement to try all feasible sonorities with
equal probability, the following optimization is performed
in the kth iteration:

maximize [1
ximiz (p) M

subjectto peTIy,...,pe .

The ith constraint p € I'; requires p to satisfy the ith rule.
Formalization of composition rules and corresponding con-
straints are detailed in Sections 4.3.1 and 4.3.5, respectively.
The objective function 7 : A% +— R is a Tsallis entropy,
which achieves a maximum when p is uniform and a min-
imum when p is deterministic. Thus the constrained maxi-
mization of I(p) disperses probability mass across all feasi-
ble possibilities and thereby encourages creativity from ran-
domness. Common choices of Tsallis entropy I(p) are the
Gini impurity I(p) = 1 — >, p?, and Shannon entropy
Ip(p) = — > ; pilogp;.

4.2.3 Implementation as Linear Least-Squares For
computational efficiency, we prefer Gini impurity as the ob-
jective function, so maximizing I (p) is equivalent to mini-
mizing ||p||3. Later in Section 4.3.5, (9) will show that each
constraint p € I'; is a set of linear equality constraints
ADp = v where A® and b® are derived from the

ith rule. If we further introduce A(®) = [1,1,--- 1] and
b = 1, and stack {AD}F_ | LD}k together to form
40 b(©)
A0 b
A = b b = . b
A) p(k)

optimization problem (1) can be rewritten as a quadratic pro-
gram (QP):
minimize ||p||3)
subjectto Ap = b,
0=p=1

AT = {p € [o,1]¢ ’ Zlepi = 1}. We overload the nota-

tion p to denote both the pmf and its vector representation. Its ac-
tual meaning can be readily figured out from the context.

Rules may conflict, and so equality constraints may only
hold approximately: Ap ~ b. Therefore, the magnitude of
the residual [|Ap — b||2 = 32, [|A®p — b(?)||2 measures the
efficacies of the rules and reflects compromises among them.
Taking this approximation into consideration yields the fol-
lowing constrained linear least-squares problem:

minimize || Ap — b||% + A||p||3 3)
subjectto 0 <p =<1,

where A > 0 balances the trade-off between a progressive
(A — ©0) and a conservative (A — 0) student. As a final
step, we normalize the solution of (3): p*/||p*||1, so as to
make it a valid pmf — the learned probabilistic model.

4.3 Teacher: the Discriminative Model

The teacher is a probabilistic connoisseur, which induces
one feature per iteration whose probability distribution best
discriminates the student from Bach. The feature serves as a
high-level abstraction of the piece, which provides one an-
gle to analyze music. A compositional rule is then derived
by computing the empirical feature distribution from Bach’s
chorales. The I/O of the teacher:

Input 1: a collection of Bach’s chorales (positive data),
Input 2: a probabilistic student® (negative data);
Output: one additional compositional rule.

4.3.1 Compositional Rule (¢, pg) A compositional rule
is defined by a feature and its probability distribution, which
reveals certain levels of regularity/speciality that is other-
wise buried in the raw representation of the music. In the
unigram setting, since the student’s probabilistic model is
specified by the sonority distribution, we study features of
vertical sonorities in particular. To formalize, let x € 0% be
a random (sonority) vector, and introduce a feature map ¢
and the corresponding feature distribution p:

¢ Q= o(QY), pe 1 H(QY) = [0,1],

where ¢ is a deterministic function that maps the raw repre-
sentation of a sonority to some feature space, and p, is a pmf
of ¢(x). A compositional rule is the pair r = (¢, ps). The
next two sub-sections elaborate a rule’s two components: ¢
and pg, respectively.

4.3.2 Feature Map (¢) Construction We introduce an
automatic procedure to construct a rich class of feature maps
that are simple and semantically meaningful. Such automa-
tion is initialized from a small set of basis features, named
descriptors, and a large set of selectors, named windows. It
constructs feature maps by combinatorially enumerating the
descriptors and windows.

To formalize, we define a feature map ¢ as the composi-
tion of a descriptor d and a selection window w. Given a set
D of descriptors and a set W of windows, MUS-ROVER’s
feature constructor generates a rich class of feature maps

®={dow|deD,weW}. (4)

3 Alternatively, one can provide another choral dataset written
by a human student who iterates with MUS-ROVER for feedback.

In (4), a selection window w is a function that maps a sonor-
ity z € Q% to a partial sonority by selecting only the des-
ignated part(s). For instance, if we use a subscript to denote
the selected part(s), then wy; 43 () = (21, 4) picks the so-
prano and bass pitches. A descriptor d is a function whose
domain is the space of partial sonorities.

There is a stark contrast in constructing W and D. W
is a large set that contains all types of vertical windows
of size < 4, ie., W = {wy | I € 2{1234\{§}}, thus is
easily enumerable. On the contrary, D is hand-designed.
However, unlike most hand designs, which require much
domain knowledge and intuition, the construction of D is
easy. This is realized by demanding 1) |D| is small, and 2)
Vd € D, d is a basic arithmetic operation that requires no
music expertise, but only basic observations from an ordi-
nary person. In this paper, we only leverage the periodic-
ity and distance measures of a piano keyboard, and choose
D = {dpitcha dpitctha dinte'r'va dinter“u127 dorder} where

dpiten(2) = 2, V2 € QU QPuPuat

dpiten12(z) = mod(z,12), Vz € QU QU uat
dinterv(2) = abs(diff(2)), Vz € Q2 U Q3 U QY
dinterv12(2) = mod(abs(diff(2)), 12), Vz € Q* U Q* U Q*;

and dy,ger (2) maps z € Q2UQ3UO? to a string that specifies
the ordering of its elements, e.g., dorder ((60, 55,52, 52)) =
“4=3<2<1”. The numbers in an order string denote the in-
dices of the input vector.

We use an example to walk through the set of descrip-
tors: for a partial sonority z = (72,52,55), dpitcn(2) =
(723 52a 55)7 dpitcth(Z) = (07 47 7)7 dinterv(z) = (20) 3)5
dintervi2 (Z) = (83 3)7 and dorder(z) = 23«17

Constructing features from (4) is simple and semantically
meaningful as desired. For instance, people can simply read
out the feature specified by d;piery © W14} 8S the piano
distance between the soprano and bass pitches.

4.3.3 Feature Distribution (p,) Inference We intro-
duce two inference procedures — exact and approximate —
depending on whether we examine a composer by its proba-
bilistic model or by its works.

For a probabilistic composer with a known probabilistic
model, such as the student, exact inference is possible. In
the unigram setting, the probabilistic model is the sonority
distribution p(x) of the raw representation x € 2*. Hence,
given a feature y = ¢(x), the pmf of y is computed as

ps()= Y. pl).)
z€p~ 1 ({y})

For a non-probabilistic individual, such as Bach, we per-
form approximate inference to estimate the feature distri-
bution from his/her works. In the unigram setting, given
a random choral piece X as a random MIDI matrix,

ii.d.

d(Xe1), ..., 0(Xen) ~" pg. Hence, we derive the max-
imum likelihood estimation (MLE) of py by its empirical
distribution py|¢ from a choral collection C

Pov) % Dujc(v) = asc(v) = 5 3 116() =3l ©

zeC

where qg|. represents the feature counts given data, and Z =
> yes(0s) dsic(y) is the normalizing constant.

To summarize, we have thus far introduced a composi-
tional rule, a pair (¢, py), in which ¢ is a feature map ob-
tained from (4), and py is the feature distribution obtained
from (5) or (6). In the sequel, Section 4.3.4 and 4.3.5 will
talk about extracting rules and post-processing rules as con-
straints, respectively.

4.3.4 Automatic Rule Extraction In each iteration, the
teacher scrutinizes a list of unlearned features, and filters
out one that satisfies certain desired properties. The chosen
feature and its distribution form the rule in the current itera-
tion. We name and formalize the desired properties of a rule
(¢, pg), so that it is worth being extracted:

1. The feature distribution p, is intended to be discrimina-
tive, so that it discloses a large gap between the student
and Bach. The Kullback-Leibler (KL) divergence is used
to quantify such a gap, a.k.a., Bayesian surprise for the
rule (Varshney 2013).

2. The feature distribution py from Bach is intended to be
informative, so that it shows regularity in Bach’s chorales
and is easy for humans to remember and apply. The Shan-
non entropy is used to quantify the level of regularity.

3. The feature ¢ is intended to be a high-level representa-
tion of a sonority’s raw representation. The ratio oy =
|p(2%)] /]2 is used to quantify the level of abstraction:
the smaller o, is, the higher level of abstraction ¢ has.

4. The feature ¢ is intended to be human interpretable,
which requires ¢ to be semantically meaningful.

To formalize the automatic rule extraction process that ac-
counts for the desired properties, we first introduce a few
notations to fit in the iterative setting of the self-learning
loop. For the kth iteration, let 7®) = (¢*) p,) be the
extracted rule, R*) = {r(1) ... +(®)} be the rule set, and
dF) = {p(M) ... 4k} be the set of feature maps used in
R MUS-ROVER starts with R{®> = {, and learns one
additional rule per iteration, so |R*)| = k,Vk = 0,1,2,....

In the kth iteration, the teacher takes as inputs Bach’s
chorales Cpqcp, and the student’s probabilistic model p<k—1>
from the previous iteration, and outputs a rule (*), by solv-
ing the following optimization problem for ¢:

maximize s (ﬁ(b‘cbmﬂ pfﬁk_1>) (7
subjectto ¢ € P\ (q)(k_l) U {¢mw}) :

The objective s(-, -) is a scoring function of two feature dis-
tributions: one from Bach, one from the student. In the con-
straint, ® is the feature class in (4), and ¢qy = dpitch ©
Wy1,2,3,4} 1S a sonority’s raw representation.

Among the four desired properties of a rule, the scoring
function accounts for the first two — being both discrimi-
native and informative. We draw inspirations from the cul-
tural hole (CH) between two distributions, first defined in

networks of scholarly communication (Vilhena et al. 2014):
for distributions p, ¢,

_, Hl) _ H(p) \
CHp.q) =1 H<p,q>‘<”D<p|q>) ’

where H(-), H(-,-), and D(-||-) are Shannon entropy, cross
entropy, and KL divergence, respectively. CH is grounded
in information theory: 1) 1—CH measures similarity: it is
the ratio of the average code length needed by Bach to that
needed by the student when both are requested to write in
Bach’s style; 2) CH is asymmetric: it only measures the gap
from the student to Bach, as the student is learning from
Bach but not vice versa. Maximizing CH (p, ¢) is equiva-
lent to maximizing the ratio D(p||q)/H (p), which coincides
with the first two properties. However, CH does not provide
a mechanism to balance the trade-off between maximizing
D(p||q) (being discriminative) and minimizing H (p) (being
informative). So we generalize CH by introducing a trade-
off parameter @ € [0, 1] and set the scoring function in (7)

D(pl|g)*
H(p)t=o ®

When o = 1, s(p,q) = D(p||q) which ignores the second
property. When « = 0, s(p, q) = 1/H (p) which ignores the
first property. When 0 < o < 1, both properties are taken
into account, and when o« = 0.5, maximizing the scoring
function reduces to maximizing CH.

The last two properties are both realized in the constraint
of (7). In the third property, o, < 1,V¢. As 0y = 1 implies
that ¢ has the same level of abstraction as the raw represen-
tation, excluding ¢,.., allows all feasible ¢ of (7) are higher
level features (o4 < 1). The fourth property is realized by
the construction of ® (Section 4.3.2).

Given the solution ¢* to (7), the kth compositional rule
is (k) = (", Dp*|Cyaen)» Which augments the rule set to
R¥) = R=1) y {p(R)Y,

4.3.5 Rules as Constraints As a last step, the teacher
converts a rule 7 = (¢, py) into a constraint p € I" of opti-
mization problem (1). The conversion is implemented as the
converse of the (exact) inference problem for feature distri-
butions (5). To formalize, let x € Q* be a random (sonority)
vector, then applying the rule (¢, p,) demands that the dis-
tribution of y = ¢(x) is pg. Solving the sonority distribution
p from the feature distribution py gives the constraint set

r= 1 37 2

yEP(Q4) z€p~ ({y})
which is a set of linear equality constraints.

s(p,q) =

p(x)=pe(y) ¢, O

5 Bigram MUS-ROVER

Bigram MUS-ROVER is targeted to learn horizontal rules
regarding sonority progressions. It studies the transition in
various high-level feature spaces that are automatically ex-
tracted by the same self-learning loop from its unigram
counterpart (with the same set of features ®). Conditioned
on different preceding sonorities, parallel rule-learning is
possible via separate copies of the self-learning loop.

5.1 Conditional Self-Learning Loops

The self-learning loop conditioned on a preceding sonority
works in a similar manner as in the unigram setting, with
differences that are listed in the following sub-sections.

5.1.1 The Probabilistic Model (p.) The student’s prob-
abilistic model follows the bigram setting with a Markov as-
sumption. The choral distribution factorizes as the product
of the conditional sonority distributions:

P(X> = Hpc (Xoi ‘ Xoifl> ,

where X,o0 = *, a special character that signifies the start of
a piece. By stationarity, all sonorities follow the same condi-
tional distribution p,(-|-) : 2% x (Q* U {x}) ~ [0, 1], which
serves as the student’s probabilistic model in the bigram set-
ting. Learning p. can be parallelized via computing p.(-|x,)
for every preceding sonority x;, € Q*U{*}, which results in
separate copies of the self-learning loop. Within each copy
associated with ,,, we solve p.(-|z,) via optimization prob-
lem (1).

5.1.2 Horizontal Rule Extraction A horizontal rule, in
the form of (¢, py|s,), characterizes the transition from the
sonority x,, in the scope of the feature ¢. The inference
problem for py,., adapts to the bigram setting: for the stu-
dent, pg|,, is inferred exactly via (5) but from the condi-
tional probabilistic model p.(-|x,); for Bach, pg|,, is in-
ferred approximately as the empirical distribution of ¢(x)
given ¢(z,), written as 1[7¢pr,Cbach-4 Then the rule extrac-
tion in the bigram setting can also be conducted via opti-
mization problem (7) by replacing pyc,,., and pfffl) with

. k-1 .
Dg|xp Coaen AN p;m >, respectively.

5.2 Online Learning

In principle, one can parallelize as many copies of the self-
learning loop as possible to learn the full probabilistic model
pe(+|) offline. The number equals |Q* U {x}| = 88* + 1,
which is too large to be fully parallelized in practice. In-
stead, we propose an online learner — an endless writer —
which writes a choral piece as an infinite sequence of sonori-
ties. It starts with %, and learns p.(-|x,) on the fly based on
the preceding sonority. The entire online learning process
is endless in order to maximize its learning capacity, and is
detailed as the following infinite loop:

1) Launch the unigram MUS-ROVER for sufficiently many’
(say K) iterations, and save the probabilistic model of the
student S/ in the final iteration.

2) Start a sonority sequence S with %, and initialize a knowl-
edge base K = () for storing probabilistic models.

3) Repeat the following procedures forever:

413¢pr,cba,ch is not the empirical distribution of ¢(x) given xp.
Conditioned on ¢(zp) rather than x,, eases the pain caused by rare
or unseen &, and achieves high generalizability.

3For instance, when the gap between the student and Bach mea-
sured by the (raw) sonority distribution is small enough.

Unigram Rule (¢, py) Catalog

Index Window Descriptor Entropy(pg)
1 (1,4) order 0.000

2 (1,3) order 0.006
11 (1,2,3,4) order 0.691
12 (1,) pitch12 2.934
16 (1,4) interv12 3.066
32 2,3,4) interv12 5.348
52 (1,2,3,4) interv12 7.090
63 (1,2,3,4) pitch 10.091

Table 1: An excerpt of the unigram rule catalog. The com-
plete catalog includes 63 rules sorted by the Shannon en-
tropies of their feature distributions. The window notation
uses integers 1, 2, 3,4 to denote SATB, respectively.

a) Read the last sonority in S as x,.
b) If the probabilistic model p.(-|z,) € K, go to d).
¢) If the probabilistic model p.(-|x,) ¢ K:

e Launch a self-learning loop in the bigram setting con-
ditioned on z,, and initialize its student by the uni-

gram student: S‘g = S,

e Execute the self-learning loop for sufficiently many
iterations, and save the final p.(-|z,) to the knowledge
base: KK = K U {p.(-|zp)}-

d) Sample a sonority from p.(-|x,), and append it to the
end of S. Go back to a).

It is clear from step 3-c) that a bigram student is evolved
from the final unigram student. Such evolution from a lower
order n-gram to a higher order, is key in rule-learning, since
some rules such as “Parallel octaves/fifths are avoided!” are
recovered by comparing rules from different n-gram mod-
els. We will exemplify this in the following section.

6 Learning Rules from Bach’s Chorales

MUS-ROVER outputs two main products: 1) a rule book on
Bach’s chorales, and 2) customized rule-learning traces for
reading the book. The rule book records a lengthy list of
rules that summarizes the statistics of Bach’s chorales from
all possible angles (features) specified by ® in (4). The traces
suggest empirical ways to read this list of conceptually en-
tangling rules — rules that are implied from others.

6.1 A Rule Book on Bach’s Chorales

MUS-ROVER independently writes a rule book summariz-
ing the statistical structure of Bach’s chorales. Even though
the book is authored by a machine, it is designed to be read-
able by humans. MUS-ROVER only leverages its feature
constructor to explore probabilistic patterns, regardless of
any self-learning loops. Inspecting the rule book allows us
to compare the machine-generated rules to our knowledge,
and gives us concrete cases from Bach that exemplify the
rules. Furthermore, it opens the opportunity for humans to
learn music theory from a machine-generated reference.

The soprano line is written in a diatonic scale.

C CiDDi E F Fi G Gi A A7 B Op¢)

The S-B interval favors consonance over dissonance.

I—II--I..—— (SB: i.c.)

P8 m2 M2m3 M3 P4TT P5 m6 M6m7 M7

Figure 1: Unigram rule examples from Bach’s chorales.

6.1.1 Chapter-1: Unigram Rules The opening chapter
records all the unigram rules, whose associated features are
automatically generated from (4). All the 63 unigram rules
are sorted by the Shannon entropies of the feature distribu-
tions, a surrogate for human memorability (Pape, Kurtz, and
Sayama 2015): rules that are more deterministic are easier
for humans to memorize.

Table 1 shows an excerpt of the (sorted) catalog of the uni-
gram rules. The complete catalog delimits the universe of all
rules that are reachable via (4), which demonstrates MUS-
ROVER'’s exploration capacity. The first eleven rules in the
catalog specify the pitch orderings between/among voices,
all of which suggest that the pitch in a higher voice should
sound higher. These rules, though less interesting, are con-
sistent with our pedagogical restrictions on voice crossing.
The 12th rule considers the soprano voice, and its descrip-
tor dpiscn12 is semantically equivalent to pitch class (p.c.).
It shows the partition of two p.c. sets (Figure 1: top), which
says that the soprano line is built on a diatonic scale. The
16th rule considers the soprano and bass, and its descriptor
dinterv12 1S semantically equivalent to interval class (i.c.).
It recovers our definition of intervalic quality: consonance
versus dissonance (Figure 1: bottom).

Parallel P8s are uncommon; PT/NTs may occur.

-—-II——I...-(SB:i.c.|P8)

P8 m2 M2m3 M3 P4TT P5 m6 M6 mT7 M7

Resolve TTs to M3,m3 and their inversions.

P8 m2 M2m3 M3 P4 TT P5 m6 M6 m7 M7

(SB: i.c.|TT)

Figure 2: Bigram rule examples from Bach’s chorales.

6.1.2 Chapter-2: Bigram Rules The second chapter
records the bigram rules that are also summarized from all
of the 63 features (®). Given a feature ¢, the bigram rule
is represented by the feature transition distribution pg(-|-).
Take ¢ = dpitch12 © wyy 4y for example: between soprano
and bass, py (+|*) gives the pmf of the opening i.c.; py (+|7)
gives the pmf of the i.c. after a P5. Due to the large amount
of conditionals for each feature, Chapter-2 is much longer
than Chapter-1.

(k)

—e =0.1
e—e =0.5

—e o=1.0

15 20 k

Unigram Rule-Learning Traces
a=0.1 a=0.5 a=1.0
1 (1,4), order (1,4), order (1,2,3), pitch
2 (1,3), order (1,3), order (2,3,4), pitch
3 (2,4), order (2,4), order (1,2,3,4), pitch12
4 (1,2), order (1,2), order (1,3,4), pitch
5 (2,3), order (2,3,4), order (1,2,4), pitch
6 (3,4), order (1,3,4), pitch (1,2,3,4), interv
E. o0 12 6
M. 2.21 4.97 8.63

Table 2: Three unigram rule-learning traces (7 2°)) with
a = 0.1,0.5,1.0. The top figure shows the footprints that
mark the diminishing gaps. The bottom table records the
first six rules, and shows the tradeoff between efficiency and
memorability (¢ = 0.005). The trace with = 1.0 shows
the most efficiency, but the least memorability.

Comparing the top bigram rule in Figure 2 with the bot-
tom unigram rule in Figure 1 shows the re-distribution of
the probability mass for feature dyiscniz © wyy 4y, the ic.
between soprano and bass (SB: i.c.). The dramatic drop of
P8 recovers the rule that avoids parallel P8s, while the rises
of m7, M7 and their inversions suggest the usage of pass-
ing/neighbor tones (PT/NTs). The bottom rule in Figure 2
illustrates resolution — an important technique used in tonal
harmony — which says tritones (TTs) are most often re-
solved to m3, M 3 and their inversions.

Interestingly, the fifth peak (m7) in the pmf of the bot-
tom rule in Figure 2 reveals an observation that doesn’t fall
into the category of (direct) resolution. In one example of
TT — mT7: (F4,B2) — (F4,G2) followed by (E4,C3),
the transition is similar to the notion of escape tone (ET),
which delays the resolution by suspending the tension. In
another example of TT — mT7: (F4, B2) — (G4, A2) after
(F4,C43), the middle sonority behaves as a passing chord
between two A7 chords. We hypothesize that, with further
study, such transition pattern may potentially lead to some
new rule like “voice leading takes precedence over sonority
especially when the sonority is on a weak beat and the beats
surrounding it are the same harmony (different inversions)”.

All of these rules (or their equivalents) are automatically
identified during the rule-learning process rather than man-
ually picked, which will be discussed in the sequel.

k

0 5 10 15 ZOk 0 5 10 15 20

@ 0@ = dpich owizay (1) ¢ = dintero 0o W 2,34

Figure 3: Rule entanglement: two sets of footprints that
mark the diminishing gaps, both of which are from the rule-
learning trace with o = 0.5. The location of the star shows
whether the associated rule is entangled (right) or not (left).

6.2 Customized Rule-Learning Traces

Despite its readability for every single rule, the rule book is
in general hard to read as a whole due to its length and lack
of organization. MUS-ROVER’s self-learning loop solves
both challenges by offering customized rule-learning traces
— ordered rule sequences — resulting from its iterative ex-
traction. Therefore, MUS-ROVER not only outputs a com-
prehensive rule book, but more crucially, suggests ways to
read/analyze it, tailored to different types of students.

6.2.1 Analyzing Unigram Rules We propose two cri-
teria, efficiency and memorability, to assess a rule-learning
trace from the unigram model. The efficiency measures the
speed in approaching Bach’s style; the memorability mea-
sures the complexity in memorizing the rules. A good trace
is both efficient in imitation and easy to memorize.

To formalize these two notions, we first define a rule-
learning trace Tk) as the ordered list of the rule set R{F),
and quantify the gap against Bach by the KL divergence in

the raw feature space: gap'*) = D(Poraw|Coaen | p;’iw).

The efficiency of T*) with efficiency level € is defined as
the minimum number of iterations that is needed to achieve
a student that is e-close to Bach if possible:

E (7_<k,>) _Jmin {n ’ gap<”> < e}, gap<k> < €
‘ R gap'®) > €.

The memorability of T*) is defined as the average entropy
of the feature distributions from the first few efficient rules:

A
M, <T<k>) = ;H (pqs(f«)\cbach))

where N = min {k:, E. (T<k>)}. There is a tradeoff be-
tween efficiency and memorability. At one extreme, it is
most efficient to just memorize py, ., , which takes only one
step to achieve a zero gap, but is too complicated to memo-
rize or learn. At the other extreme, it is easiest to just mem-
orize p, for ordering related features, which are (nearly) de-
terministic but less useful, since memorizing the orderings

takes you acoustically nowhere closer to Bach. The « pa-
rameter in the scoring function of (7) is specially designed
to balance the tradeoff, with a smaller o for more memora-
bility and a larger « for more efficiency (Table 2).

To study the rule entangling problem, we generalize the
notion of gap from the raw feature to all high-level features:

k A k
gap = D(Byic,o.n | 05), Vo € 0.

Plotting the footprints of the diminishing gaps for a given
feature reveals the (possible) implication of its associated
rule from other rules. For instance, Figure 3 shows two sets
of footprints for ¢(®) and ¢'V). By starring the iteration
when the rule of interest is actually learned, we can see that
7(6) cannot be implied from the previous rules, since learn-
ing this rule dramatically closes the gap; on the contrary,
(1) can be implied from the starting seven or eight rules.

6.2.2 Analyzing Bigram Rules Given a rule-learning
trace in the bigram setting, the analysis on efficiency and
memorability, as well as feature entanglement, remains the
same. However, every trace from the bigram model is gen-
erated as a continuation of the unigram learning: the bigram
student is initialized from the latest unigram student (Section
5.2). This implies that the bigram rule set is initialized from
the unigram rule set, rather than an empty set. MUS-ROVER
uses the extracted bigram rules to overwrite their unigram
counterparts — rules with the same features — highlight-
ing the differences between the two language models. The
comparison between a bigram rule and its unigram counter-
part is key in recovering rules that are otherwise unnotice-
able from the bigram rule alone, such as “Parallel P8s are
avoided!” Therefore, MUS-ROVER emphasizes the neces-
sity of tracking a series of evolving n-grams, as opposed to
learning from the highest possible order only.

7 Discussion and Future Work

This paper presents MUS-ROVER that outputs musical
knowledge instead of requiring it as input. It behaves like a
music theorist, rather than a composer. Historically, a great
theorist does not necessarily imply a great composer, and a
great composer may not require music theory training to pro-
duce a masterpiece. It is not clear whether any set of rules,
no matter how complex, can guarantee the composition of a
great piece. Therefore, we do not judge MUS-ROVER by its
compositional output; our aim is to demonstrate the extent to
which rules can capture the decisions of great composers.

MUS-ROVER takes a first step in automatic knowledge
discovery in music, and opens many directions for future
work. Its outputs — the rule book and the learning traces —
serve as static and dynamic signatures of an input style. We
plan to extend MUS-ROVER beyond chorales, so we can an-
alyze similarities and differences of various genres through
these signatures, opening opportunities for style mixing.
Moreover, while this paper depicts MUS-ROVER as a fully-
automated system, we could have a human student become
the generative component, interacting with “the teacher” to
get iterative feedback on his/her compositions.

Acknowledgements

‘We thank Professor Heinrich Taube, President of Illiac Soft-
ware, Inc., for providing Harmonia’s MusicXML corpus of
Bach’s chorales.®

References

Bengio, Y.; Courville, A.; and Vincent, P. 2013. Representa-
tion learning: A review and new perspectives. IEEE Trans.
Pattern Anal. Mach. Intell. 35(8):1798-1828.

Bengio, Y. 2009. Learning deep architectures for Al. Found.
Trends Mach. Learn. 2(1):1-127.

Biles, J. 1994. Genjam: A genetic algorithm for generating
jazz solos. In Proc. ICMC, 131-131.

Cope, D. 1996. Experiments in musical intelligence, vol-
ume 12. AR editions Madison, W1.

Dash, S.; Malioutov, D. M.; and Varshney, K. R. 2015.
Learning interpretable classification rules using sequential
rowsampling. In Proc. ICASSP, 3337-3341.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In Proc. NIPS, 2672—
2680.

Gutmann, M., and Hyvirinen, A. 2010. Noise-contrastive
estimation: A new estimation principle for unnormalized
statistical models. In Proc. AISTATS, 297-304.

Malioutov, D., and Varshney, K. 2013. Exact rule learning
via boolean compressed sensing. In Proc. ICML, 765-773.

Merz, E. X. 2014. Implications of ad hoc artificial intelli-
gence in music. In Proc. AIIDE.

Mozer, M. C. 1994. Neural network music composition
by prediction: Exploring the benefits of psychoacoustic con-
straints and multi-scale processing. Conn. Sci. 6(2-3):247—
280.

Pape, A. D.; Kurtz, K. J.; and Sayama, H. 2015. Complexity
measures and concept learning. J. Math. Psychol. 64:66-75.
Rajanna, A. R.; Aryafar, K.; Shokoufandeh, A.; and Ptucha,
R. 2015. Deep neural networks: A case study for music
genre classification. In Proc. ICMLA, 655-660.

Rohrmeier, M., and Cross, I. 2008. Statistical properties of
tonal harmony in bachs chorales. In Proc. ICMPC, 619-627.
Simon, L.; Morris, D.; and Basu, S. 2008. MySong: au-
tomatic accompaniment generation for vocal melodies. In
Proc. CHI, 725-734.

Taube, H. 1999. Automatic tonal analysis: Toward the im-
plementation of a music theory workbench. Comput. Music
J. 23(4):18-32.

Varshney, L. R. 2013. To surprise and inform. In Proc. ISIT,
3145-3149.

Vilhena, D. A.; Foster, J. G.; Rosvall, M.; West, J. D.; Evans,
J.; and Bergstrom, C. T. 2014. Finding cultural holes: how
structure and culture diverge in networks of scholarly com-
munication. Sociol. Sci. 1:221-238.

*http://www.illiacsoftware.com/harmonia

