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Abstract

We discuss how Boden’s creative processes of combination,
exploration, and transformation naturally emerge in mod-
els that learn musical improvisation via stochastic transduc-
tion grammar induction. Unlike a conventional monolingual
grammar, a transduction grammar represents complex trans-
formative relationships between one representation language
and another. For musical improvisation, a transduction gram-
mar both provides a large (typically infinite) space of possible
hierarchical combinations, and defines a combinatorial space
to explore. A stochastic transduction grammar (STG) allows
controlled randomness in the combination and exploration.
We have been developing STG based models in recent work
on learning musical improvisation for hip hop, flamenco, and
blues. Inducing an STG simultaneously (a) identifies chunks
that will become candidates for recombination as well as pat-
terns of combination, (b) constructs a new spaces for explo-
ration in improvisation and composition, and (c) learns trans-
formations from one representation to another.

Introduction

We are developing a general computational framework for
learning musical improvisation, that (a) is capable of rep-
resenting a realistically broad range of the many differ-
ent complex interactions among factors that should influ-
ence the improvisation, and yet (b) can still support ef-
ficient polynomial-time training and improvisation algo-
rithms. While a full solution to the representation, learn-
ing, and improvisation problems is clearly a long-term re-
search program, we have already begun to show how vari-
ous aspects of these tasks can be accomplished, via bilingual
stochastic transduction grammar or STG models that can
simultaneously capture contextual preferences across a wide
variety of dimensions.

In this paper, we discuss why we believe that our STG
modeling framework tackles the classic modes of creativity
advanced by Boden (1994, 2004, 2009). While numerous
elaborations, modifications, and criticisms of Boden’s anal-
ysis have since been proposed, her breakdown of creative
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processes into unfamiliar combinations of familiar concepts,
exploration of conceptual spaces, and transformation of con-
ceptual spaces still does identify some of the major essential
cornerstones of creativity. Boden’s first type of creativity,
through novel combinations of familiar concepts, leads to
the kind of surprise that comes from unfamiliarity or un-
likeliness. Boden’s second type of creativity, through ex-
ploration of an extremely large or infinite conceptual space,
leads to the kind of surprise that comes from seeing that an
unexpected idea actually fits within your existing conceptual
framework, but you hadn’t thought of it. Boden’s third type
of creativity, through transformation of ideas represented in
one conceptual space to another, leads to the kind of surprise
that comes from seeing something that could never have ap-
peared to be possible because of the limitations of the origi-
nal conceptual space.

Musical improvisation is a particularly interesting domain
to study creativity, being a uniquely human province of
creative expression that has not been found even in other
“singing” species. Musical improvisation can be seen as the
creative activity of spontaneous, on-the-fly musical compo-
sition without prior planning, in response to a novel con-
text, in contextually relevant ways that adhere to stylis-
tic conventions, yet are not constrained by a priori written
scores. The novel context can be (a) provided by other musi-
cians, who are often also improvising, or (b) provided sim-
ply by the environment, if a musician is producing a solo
improvisation, and in the extreme case could even be an
“empty” null environment. Whereas Western music in re-
cent centuries has placed a premium on musicians execut-
ing pre-written scores, historically speaking this is a recent
anomaly—throughout most of human history, instead it is
creative improvisation that has been the norm in many, if
not most, traditional and folk forms of music.

We identify five aspects of the STG modeling framework
that bear upon Boden’s analysis:

1. Our shift to stochastic rather than purely symbolic gram-
mars in the late 1980s and early 1990s (Wu, 1989, 1991,
1993, 1995), which have since become dominant in most
relevant research strands, emphasize probabilistic judg-
ments of the degree of goodness for various hypotheses
about possible combinations, as well as contextually in-
formed search biases in exploration.
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2. Our emphasis on hierarchically compositional models
rather than flat models (like Markov models) provides a
sufficiently rich space of combination.

3. The shift of the primary emphasis to bilingual modeling
of structural transduction shifts the brunt of the model-
ing power onto learning biases in the transformations be-
tween alternative conceptual representations, rather than
traditionally limited monolingual modeling of a single
representation language.

4. Our emphasis on induction methods for STGs directly at-
tacks the problem of generating new conceptual spaces
to explore, since exposure to different environments auto-
matically results in inducing different spaces of possible
transformations.

5. Our transduction neural network implementations of
STGs further increase computational efficiency while pro-
viding a parallel attack on the combinatorial explosion
of category induction when generating new conceptual
spaces.
We discuss these relationships to Boden’s characteriza-

tion of creativity in the context of our recent work deploying
stochastic transduction grammars in hip hop, flamenco, and
blues learning models. In the hip hop improvisation mod-
els of Wu et al. (2013), we showed how STGs can be used
to learn how to improvise responses in freestyle rap battling
when confronted with arbitrary challenge raps, by learning
complex relationships between challenges and responses. In
the flamenco learning models of Wu (2013), we showed how
STGs can be used to learn how to improvise complementary
lines in, for example, palmas percussion in the context of
perceiving cajn percussion, by learning complex hypermeter
and rhythm biases in the relationship between the languages
of different percussion instruments. In the blues learning
models of Wu (2016), we showed how STGs can be use to
learn the degree to which microtonal “blues notes” tend to
be bent depending on the context of improvisation.

Formal preliminaries:

Transduction grammars

Musical improvisation modeling approaches based on STGs
benefit from leveraging several decades of advances in the
field of statistical machine translation, which exhibits very
analogous challenges. Transduction grammars represent re-
lationships between alternate representations of a complex
idea, via a bilingual parse tree. The syntax directed trans-
duction grammars (SDTGs) of classic formal language the-
ory (Lewis and Stearns, 1968) are powerful, but exponen-
tially too complex for recognition, parameter estimation,
and induction. Our work has pioneered the learning and use
of a strongly restricted subclass of SDTGs known as inver-
sion transduction grammars or ITGs (Wu, 1995, 1997). Un-
like SDTGs, polynomial time training and improvisation al-
gorithms exist for ITGs, along with their family of restricted
variants, including linear transduction grammars (LTGs) and
monotonic transduction grammars (MTGs). What makes
ITGs of even more special interest is that they have been em-
pirically demonstrated over several decades of cross-lingual

and machine translation research to possess nearly univer-
sal coverage of transformations between any pair of natu-
ral language representations (Zens and Ney, 2003; Saers,
Nivre, and Wu, 2009; Addanki et al., 2012). The combi-
natorial properties of ITGs explain a longstanding mystery
in linguistics of the “magic number 4” language universal of
semantic frame structure, that suggests a deep-rooted evolu-
tionary reason why human cognition has evolved to only be
capable of efficiently transforming certain classes of repre-
sentation languages (Wu, 2014).

Transduction rules (and instances of rules) represent
structured correlations between an input representation lan-
guage and an output representation language. Formally, an
ITG is a tuple hN,⌃,�, R, Si, where N is a finite nonempty
set of nonterminal symbols, ⌃ is a finite set of terminal sym-
bols in L0 (output language), � is a finite set of terminal
symbols in L1 (input language), R is a finite nonempty set
of inversion transduction rules and S 2 N is a designated
start symbol. A normal-form ITG consists of rules in one of
the following four forms:

S ! A,A ! [BC] , A ! hBCi, A ! e/f

where S 2 N is the start symbol, A,B,C 2 N are non-

terminal symbols and e/f is a biterminal. A biterminal is a
pair of symbol sequences: ⌃⇤ ⇥ �⇤, where at least one of
the sequences have to be nonempty. The square and angled
brackets signal straight and inverted order respectively. With
straight order, both the L0 and the L1 productions are gener-
ated left-to-right, but with inverted order, the L1 production
is generated right-to-left.

Given a pair of input and output sentences e1, . . . , eT and
f1, . . . , fV respectively, an ITG generates a biparse tree by
recursively combining smaller bispans (chunks of aligned
input and output segments) into larger bispans using the syn-
tactic rules in straight or inverted order. Each bispan corre-
sponds to at least one nonterminal and is represented using
a 4-tuple s, t, u, v which corresponds to the input segment
with tokens es, es+1, . . . , et and the output segment with to-
kens fu, fu+1, . . . , fv .

Sets of biparse trees are represented explicitly as well,
but for efficiency, tabular and hypergraph data structures are
used wherever possible to compress the storage of biparse
trees that share subtrees (these data structures are commonly
referred to as charts or packed forests). This is responsible
for the polynomial-time dynamic programming algorithms
for recognition and training for ITGs.

Stochastic modeling

One of the key innovations of Wu (1997) was to introduce
stochastic versions of transduction grammars. Boden’s anal-
ysis of creativity, developed largely before the wholesale
paradigm shift of AI to statistical learning approaches, did
not benefit from the additional mileage afforded by proba-
bilistic approaches.

In STGs, such as stochastic ITGs, a probability is asso-
ciated with each transduction rule. Typically, this is the
conditional probability of the right-hand-side, given the left-
hand-side terminal. This corresponds to a recursive stochas-
tic generative process, in which the left-hand-side nonter-



minal probabilistically generates a combination of elements
(either nonterminals or biterminals) described by the right-
hand-side. Stochastic generative models facilitate controlled
randomness in all of Boden’s types of creativity.

For combination and transformation processes, stochas-
tic transduction rules dictate not only what types of ideas
may be combined in improvisation, but also how good such
a combination is deemed to be. Of course, the probability of
the elements being combined also contributes to the overall
degree of goodness, given the recursive tree-structured com-
positionality. The rap battle learning approach introduced
by Wu, Addanki, and Saers (2013) improvises freestyle rap
responses by considering alternative ways to combine ideas
that are somehow relevant to the challenge rap. Combina-
tion and transformation processes are integrated in the STG
model—the combination hypotheses arise in the course of
transforming the challenge rap into a response rap. The
choice of the complete response follows the distribution over
the space of transductions implied by the transduction rule
probabilities.

For exploration processes, the probabilities of hypothe-
ses (kept in the aforementioned hypergraphs) facilitate bi-
asing the directions of exploration toward more likely direc-
tions. Because of the large number of choices at each level of
granularity, it is typical to use various pruning heuristics to
limit the number of improvisation hypotheses at each level.
This can also be thought of as using the environmentally
trained rule probabilities to dynamically reshape the con-
ceptual space. Exploration decisions can be made either by
simply retaining the n best hypotheses at each level, or if it is
desired to increase the “surprise factor”, by selecting a sub-
set of the hypotheses randomly according to the distribution.

Compositional modeling

In previous work on stochastic grammatical models for mu-
sic, it is common to find flat Markov models and/or hidden
Markov models (HMMs). For example, both the Continua-
tor model of Pachet (2003) and the Factor Oracle models of
Assayag et al. (2006) and Assayag and Dubnov (2004) use
Markov models to learn music improvisation conventions—
an approach further explored by Franois, Chew, and Thur-
mond (2007) and Franois, Schankler, and Chew (2010). A
grammar induction approach for learning jazz grammars un-
der Markovian assumptions is proposed by Gillick, Tang,
and Keller (2010). Relatively little has been done on mu-
sical structure modeling using stochastic context-free gram-
mars (Lari and Young, 1990). Related work on unsupervised
learning of CCMs (a variant of SCFGs) for musical gram-
mars includes that of Swanson, Chew, and Gordon (2007),
or the Data Oriented Parsing approach of Bod (2001).

From the standpoint of Boden’s combination processes,
a general framework for creative improvisation needs a less
restricted mechanism for creating unfamiliar combinations
by combining familiar ideas. Such combination cannot be
limited to flat models. As Boden (1994) writes:

For writing [chord] sequences, unless they are kept bor-
ingly simple, typically requires a great deal of time
and effort. They are complex hierarchical structures,

with subsections “nested” at several different levels,
and with complex harmonic constraints linking some-
times far-separated chords. (p. 91-2)
Our STG framework moves strongly toward hierarchi-

cally compositional modeling. This allows such contexts for
improvisation to be represented adequately—even though
Boden suggests that such chord progressions could not be
improvised “on the fIy”, skilled jazz musicians can in fact
easily improvise chord progressions of the same complexity
as most jazz standards, so we do not want a representation
that precludes describing such conceptual combinations.

Transduction oriented modeling

The shift of emphasis to bilingual transduction grammars
can be seen as a direct formalization of Boden’s character-
ization of the role of transformation in creativity. It recog-
nizes that realistically human musical improvisation must
require not only complex combinations of structures and
patterns, but also finely tuned predictions about how to inter-
pret an environmental context represented in an input con-
ceptual space, and transform it into an improvision in an
output conceptual space. Improvisational and accompani-
ment decisions in one part can be influenced strongly, or
subtly, by decisions made in other parts; the interaction oc-
curs hierarchically or compositionally at many overlapping
levels of granularity. Improvisation and accompaniment de-
cisions are not merely random; skilled participants under-
stand how to communicate with each other within accepted
conventions and frameworks—as, for example, in flamenco
palos, Indian ragas, jazz and blues. Widely used conven-
tions include tonal systems, metrical constraints, chord pro-
gressions, verse structures, rhythmic patterns, and melodic
phrases that are re-used or swapped into different positions
within the structures.

A good model for musical improvisation should allow
making decisions that integrate interacting contextual fac-
tors over many levels of granularity, that is capable of encod-
ing such sophisticated phenomena. However, the longstand-
ing risk in using expressive representations for transduction
is the typically exponential blow up in the complexity of ma-
chine learning.

Stochastic inversion transduction grammars (a) have suf-
ficient expressiveness to represent compositionally interact-
ing factors between two different parts or instruments at
many overlapping levels of granularity, (b) can be efficiently
induced via the polynomial-time learning algorithms that ex-
ploit the combinatorial structure of SITGs, and (c) can then
use the learned knowledge representation to creatively per-
form real-time improvisational expression. For capturing
the complexity of hierarchical structural relationships be-
tween different musical languages, the bilingual approaches
of STGs have many appealing properties. As shown in
the machine translation work discussed earlier, they allow
idiomatic constructs of significant complexity to be en-
coded. They allow biasing of probabilities from many dif-
ferent contextual features. They allow idiomatic constructs
to be combined in creative new ways inspired by the un-



planned contextual factors. They accommodate correlations
that are not necessarily aligned in time, which make them
significantly more expressive than context-free grammars
(CFGs)—a flexibility that is exploited in both the hip hop
improvisation models of Wu et al. (2013) and the blues note
learning models of of Wu (2016). The basic time complex-
ities for SITG recognition and training are O

�
n6

�
, in con-

trast to O
�
n3

�
for stochastic CFGs, but this has still proven

quite feasible especially with standard heuristic beam prun-
ing methods.

Transduction grammar induction modeling

It can be relatively easy to construct automatic music gener-
ation algorithms that can be parametrized by various con-
ditions and constraints. Early approaches to musical im-
provisation modeling often relied on manually constructed
rules; these approaches can represent fairly complex kinds
of structures and patterns, but the improvisation is limited to
the rules that have been imagined by experts and hand coded
in advance, which can only crudely be matched to true hu-
man improvisation. STGs can also be manually written if
desired, to build such systems. It has been frequently ar-
gued, however, that such systems are not truly creative.

On the other hand, we believe truly creative improvisation
requires learning—human improvisation arises from adapt-
ing and synthesizing experience gained in many previously
unrelated scenarios. However, previous machine learning
approaches to musical improvisation attempt to match their
performance more finely to human improvisation by training
contextual predictors on actual music data, but improvisa-
tion tends to be restricted to what can be modeled via fairly
simple representations such as HMMs to limit the complex-
ity of the learning.

Truly modeling the complexity of human musical impro-
visation requires machine learning approaches that not only
estimate the probabilities in some existing structural model
(say, an STG), but can in fact learn the structure of a new
STG by inducing new types of combination and transforma-
tion patterns (transduction rules) and categories (nontermi-
nals).

We have developed numerous transduction grammar in-
duction methods over the past decades in machine trans-
lation research. Some employ bottom-up incremental rule
chunking; others employ top-down incremental rule seg-
mentation. Some induction methods are driven by a max-
imum likelihood objective; others are driven by a minimum
description length (MDL) or maximum a posteriori (MAP)
objective. The flamenco learning model of Wu (2013), for
example, employs a MDL driven top-down incremental rule
segmentation strategy for learning transduction rules and in-
ducing categories.

Inducing an STG inherently defines a new conceptual
space for Boden’s exploration processes. Newly induced
categories and rules dictate a space of possible combina-
tions to explore. Transduction grammar induction changes
the shape of the exploration space. It identifies chunks that
will become candidates for recombination as well as patterns
of combination, (b) constructs a new spaces for exploration

Figure 1: A symbolic biparse tree (left) and its implementa-
tion in a TRAAM neural network (right). The horizontal bar
under the root node of the symbolic biparse tree indicates an
inverted transduction rule at that level.

in improvisation and composition, and (c) learns transfor-
mations from one representation to another.

Transduction neural network modeling

Stochastic transduction grammars can be implemented neu-
rally instead of symbolically, yielding tradeoffs that in-
clude a number of advantages. The TRAAM (transduction
RAAM) model proposed by Addanki and Wu (2014) re-
duces the need to explicitly represent enormous numbers
of similar competing hypotheses, by instead representing
improvisation hypotheses using fixed-dimensionality con-
tinuous vectors. The distributed vector representations in
TRAAM aim to parallel the structural composition of a
syntax directed transduction grammar. However, unlike
symbolic transduction grammar based representations, the
continuous vector representations in effect represent soft
neighborhoods of cross-lingual transformational associa-
tions. TRAAM implicitly learns context-sensitive general-
izations over the structural relationships, between the corre-
sponding parts of the input and output representations across
all levels of granularity, while avoiding incurring the sym-
bolic models’ exponential cost of modeling context sensitiv-
ity.

More formally, TRAAM is a bilingual generalization of
the way that the RAAM (recursive autoassociative mem-
ory model) of Pollack (1990) monolingually approximates
context-free grammars. In TRAAM’s distributed represen-
tation of an ITG, each bispan s, t, u, v is represented using a
feature vector vstuv of dimension dwhich represents a fuzzy
encoding of all the nonterminals that could generate the bis-
pan. This stands in contrast to the symbolic ITG where each
nonterminal that generates the bispan must be enumerated
separately. As with symbolic ITGs, vectors corresponding
to larger bispans are recursively generated from the vectors
representing smaller bispans, but in TRAAM this is done
using a compressor network. The compressor network takes
two vectors of dimension d, along with a single bit corre-



sponding to straight or inverted order, and outputs a vector
of dimension d—essentially compressing an input of 2d+1
dimensions to a vector of dimension d.

The role of the compressor network is analogous to the
transduction rules in the ITG model, but with the impor-
tant distinction of (1) keeping the encoding fuzzy, and (2)
forcing generalization over similar vectors in the Euclidean
space neighborhood. Using an example from the neural hip
hop improvisation work of Wu and Addanki (2015), figure
1 visualizes how transduction rule instances (both straight
and inverted) correspond to inputs to the compressor net-
work. Each nonterminal in an ITG can be encoded as a bit
vector, identical to the vector of the bispan in our model. Us-
ing the universal approximation theorem of neural networks
(Hornik, Stinchcombe, and White, 1989), an encoder with
a single hidden layer can represent any set of transduction
rules. Conversely, any variant of our model can be repre-
sented as an ITG by assuming a unique nonterminal label
for the feature vector corresponding to each bispan.

Hence, Boden’s transformations between conceptual
spaces can be represented using neural TRAAMs as an alter-
native to symbolic STGs, providing two ways of encoding
compositional bilingual relations that can model the novel
combination of familiar concepts. TRAAM’s neural encod-
ing of nonterminals is better suited for modeling generaliza-
tions over bilingual relations without exploding the space for
Boden’s exploration processes, while symbolic ITG repre-
sentations avoid potential confusions between concepts due
to accidental similarities between vectors.

Conclusion

Musical improvisation in our stochastic transduction gram-
mar based framework is modeled as a quasi-translation task
in which any environmental context encoded in an input rep-
resentation language is probabilistically transformed into a
potentially novel, unfamiliar combination of familiar ideas
in an output representation language. This is translation, or
transduction, in the mathematical sense, as in formal lan-
guage theory; it is of course not translation in the linguistic
sense. We have suggested how our STG approach addresses
each of Boden’s major types of creative processes: combina-
tion, exploration, and transformation. Our shift to stochas-

tic rather than purely symbolic grammars emphasizes prob-
abilistic judgments of the degree of goodness for (a) alterna-
tive transformation hypotheses that are created from novel
combinations of familiar ideas, as well as (b) contextually
informed search biases in exploration. Our emphasis on hi-
erarchically compositional models provides a richer, more
realistic space of combination than flat Markov models. Our
shift to emphasize bilingual modeling of structural transduc-

tion shifts the modeling focus onto learning biases in the
transformations between alternative conceptual representa-
tions, instead of limiting ourselves to traditional monolin-
gual modeling of a single representation language. Our em-
phasis on induction methods for STGs directly attacks the
problem of generating new conceptual spaces to explore,
since exposure to different environments automatically re-
sults in inducing different spaces of possible transforma-
tions. Finally, our transduction neural network implemen-

tation of STGs reduces the combinatorial explosion prob-
lems of category induction when generating new conceptual
spaces.
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