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Abstract

There are several extant software systems designed to generate
music in real-time using a factor oracle automaton constructed
from the musical input of a human improvisor. The impetus
for the design of the factorOracle external is neither a desire
to supersede these systems nor introduce novel algorithms for
traversing the oracle, but rather to provide a fast, canonical
interface for the automaton in Cycling74’s Max and, in future
iterations, the Pure Data programming environment. Technical
features of the factorOracle software are introduced here.

Background
The factor oracle is a directed acyclic word graph capable
of expressing at least all of the substrings of a given word.
The oracle can be built incrementally, in O(m) with respect
to both processing time and memory consumption (Allauzen,
Crochemore, and Raffinot 1999). The input can be a chain
of pitches, durations, notes, collections of audio samples, or
other musical features. The factorOracle external (1) contin-
uously builds the oracle for a set of incoming musical data,
and (2) generates variations on the stored data by exploiting
features of the oracle that identify repeated patterns in the
input.

Figure 1: Factor oracle of ABB

In constructing the factor oracle, elements of the input
word become transitions between states in the graph, as
shown in Figure 1. A state may also have forward transi-
tions to one or more non-contiguous states (for instance, B
connects state 0 to state 2 in Figure 1). Each transition of
this kind ends a sequence of transitions (including only the
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transition itself if the originating state is 0) that shares a suf-
fix with a substring of the original word terminated by the
state to which the transition points. Backward links, called
suffix links (shown by dotted lines in Figure 1), trace the path
of a supply function that determines where state-skipping
transitions will be added.

The oracle is initialized in Algorithm 2 by creating state
zero and setting its supply function Se(0) to �1. Algorithm 1
is then called for each subsequent element of the input word.

Algorithm 1 Function addLetter(Oracle(p = p1 p2 ... pm),
s ) (Allauzen, Crochemore, and Raffinot 1999)

1: Create a new state m + 1
2: Create a transition s from m to m + 1
3: k Sp(m)
4: while k >�1 and there is no transition s from k do
5: Create a new transition s from k to m + 1
6: k Sp(k)
7: end while
8: if k ==�1 then
9: s 0

10: else
11: s the state reached by transition s from k
12: end if
13: Sps (m+1) s
14: return Oracle(p = p1 p2 ... pms )

Algorithm 2 Function buildOracle(p = p1 p2 ... pm) (Al-
lauzen, Crochemore, and Raffinot 1999)

1: Create Oracle(e) with a single state 0
2: Se(0) �1
3: for i 1 to m do
4: Oracle(p = p1 p2 ... pi) addLetter(Oracle(p = p1

p2 ... pi�1), pi)
5: end for

For each new transition s and state m+1, we follow the
suffix link for state m back to an earlier state k (this action
describes the supply function Sp() shown in Algorithm 1). If
there is no transition s from the earlier state to the new state,
we add it. We continue to follow the suffix links back and
add transition s when needed, until we reach state �1 or a
state k f inal that has a transition s to some other state. In the
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former case, we add a suffix link from m+1 to state 0, and in
the latter we add a suffix link from m+1 to the state pointed
to by s from k f inal .

It is important to note that all of the systems that use
the factor oracle to generate music turn the oracle into a
cyclic graph, allowing navigation via suffix links or reverse
suffix links (Assayag et al. 2006; Assayag and Bloch 2007;
Cont, Assayag, and Dubnov 2007; Dubnov and Surges 2013;
Dubnov and Wang 2014; Dubnov, Hsu, and Wang 2015).
When both reverse and forward suffix links are used, the
graph also becomes partially undirected, violating another
constraint of the originally proposed structure. Storage of
suffix links for use post-construction increases the memory
footprint of the automaton, which was developed in part as a
means of data compression.

Suffix links, however, appear to be the most important fea-
ture of the oracle for recombination of musical data, since
they connect the ends of substrings that have the longest re-
peated suffix with respect to the substring ended by the origin
state of the suffix link. The smoothness of the shift between
musical passages depends upon the length of the merged seg-
ment (longer == smoother). A method for determining the
length of the longest repeated suffix is described in (Lefebvre
and Lecroq 2000), and is employed in the generative systems
previously cited.

Since the oracle is built incrementally and in real time, it
is ideal for alternation between learning structure and gen-
erating music (Assayag et al. 2006), and can therefore be
developed as an artificial improvisation partner, beginning
with the modifications described above. Prior systems have
been designed to work with both symbolic music and audio
data; these employ various methods for identifying informa-
tion of interest in the oracle. Instantaneous style reproduction
and pattern matching are the primary applications.

Rationale
The software available for generating music with the factor
oracle seems to require older or reducible technological de-
pendencies. OMax is a collection of nine externals, which
appear to be unsupported for Max versions 6 and above (Levy
2012), and PyOracle’s real-time component apparently re-
quires embedding Python in Max (Dubnov and Surges 2013).
The factorOracle external (see the new alpha-phase source
code1) came about from a desire for an implementation that
is:

• fast—written purely in C, as opposed to Java or an inter-
preted language

• simple in function and design
• integrated with one or more of the most popular interactive

real-time audio environments (Max, Pure Data) as a single
external

• usable by a non-expert without modification or extension
• not beholden to any particular generative or analytical

model, but extensible by an expert user through patching
or source code modification
1https://github.com/ajwnycct/factorOracle

Features

Figure 2: Max patch showing all factorOracle I/O options.

Construction
Data used to build the oracle are sent in the left inlet of the
external (see Figure 2). Older versions of the software sup-
ported multiple data types: symbols, floats, integers, and lists
(Wilson 2009; Brent and Wilson 2012). In this version, input
is limited to integers, reducing code maintenance overhead
and increasing performance. The onus is on the user to pro-
vide, when necessary, a suitable encoder/decoder to translate
information going into and coming out of the oracle; poly-
phonic musical data, for instance, must be organized into
meaningful structures reconstituted as integers.

In a recent performance incorporating the factorOracle
external (see Figure 3), MIDI information was mapped to
a matrix of 19 [0-18] equal-tempered pitch classes by 24
[0-23] durations. Each pitch/rhythm pair (p,r) was assigned
a cross-alphabet letter c by c = (p⇤24+ r), and decoded by
r = (c mod 24), p = (bc/24c mod 19) (Artinian and Wilson
2016). A cross-alphabet of any dimensionality could be sim-
ilarly expressed, provided the total number of cells in the
matrix is less than the largest representable integer. For ex-
ample, a multidimensional matrix of audio features could be
sectioned into a finite number of “geographical” regions, and
analysis frames from an input signal could be assigned num-
bers corresponding to their locations within the matrix. Of
course, establishing the resolution and shape of such regions
would be an important factor in determining the vaildity of
the resulting graph.

Internally, factorOracle uses a linked list of state objects
to store data. The struct for each state m includes:



• the immediate transition to state m+1
• the number of outgoing transitions
• the indices of states terminating the outgoing transitions
• the index of the state terminating the suffix link from state

m

Note that it is not necessary to store both the state indices
and the transitions themselves, since a transition from state m
to state m+n is equal to the transition stored at state m+n�1
(Allauzen, Crochemore, and Raffinot 1999). In a subsequent
version, each state will also store the longest repeated suffix
indicated by its suffix link.

Figure 3: Performance of Eighteen at NYC EIS 2016.
https://vimeo.com/adamjameswilson/eighteen, http://eis.nyc

Generation
There are two ways to generate output from the factorOracle
external. (1) A bang in the left inlet will return a transition
selected using a weighted random walk of the oracle graph
structure, tempered by a few rules to avoid loops. (2) An
integer m sent to the middle inlet will return all of the data
associated with state object m; this data can then be passed
to a custom process designed to choose another state or tran-
sition. An external process can be made to accumulate data
for applying decisions based on historical choices as well as
discovered features. Virtually any conceivable model govern-
ing analysis and traversal of the graph can harness the oracle
in this way.

Data returned from the external when an integer is sent to
the middle inlet include:

• the index of the current final state
• the index of the current state
• the total number of transitions from the current state
• the list of transitions from the current state
• the list of indices of states terminating transitions from

the current state (the position of each index in this list can
be used to look up its associated transition in the list of
transitions above)

• the index of the state terminating the suffix link originating
from the current state

When a bang is sent to the left inlet, transitions are cho-
sen using an internal process selectable by sending a “mode”
message with an integer argument, specifying the mode of
traversal, to any inlet. There is at present only one such mode,
which makes use of a probability value sent as a float to the
rightmost inlet. This value can vary in real time. The proba-
bility of taking a suffix link S is related to the probability of
taking a transition T by P(S) = 1.0�P(T ). Uniform weights
are used when choosing among transitions along forward
links from the current state, including the link pointing to the
next state.

When a suffix link is taken, the mode outputs the tran-
sition to the state immediately following the state reached
by the suffix link, prohibiting forward skips until the next
output request. This avoids one of the problems mentioned
in (Assayag and Bloch 2007): if we allow the possibility of
forward state skips, we can potentially follow a suffix link
and then jump right back to the origin state of the suffix link,
producing—in this implementation—unwanted repetitions of
a single transition. Unlike Assayag and Bloch, we don’t pro-
hibit forward skips altogether, though perhaps this approach
will be taken with a separate generative mode in a future
version.

A second issue, noted in both (Assayag and Bloch 2007)
and (Dubnov and Wang 2014), involves the meta-rhythmic
“errors”—isolated metric idiom violations—that can arise
from taking forward leaps or suffix links based on a very
short common suffix. These produce jarring “interruptions”
or accents, creating a relationship of output to input analo-
gous to the relationship between a Picasso painting and its
subject. If these stylistic anomalies are unacceptable to the
user, the input word can be built from a cross-alphabet of
metric groups of notes, instead of a cross-alphabet of indi-
vidual notes, or a custom external ruleset designed to avoid
incomplete beats can be programmed for use with the middle
inlet.

Note that forcing the generative process to take an immedi-
ate forward transition after following a suffix link can lead to
an infinite loop at the level of a single transition, in the case
where the final state has a suffix link back to the previous
state. To remedy this, we force the oracle to follow the chain
of suffix links back from the terminal state until we reach a
state with a suffix link going back more than one state. This
is the only case in which we allow the generative state of
the oracle to reach zero; in all other cases, we go back no
further than state 1, since there is no suffix prior to state zero
to exploit as a shared connection between substrings.

Examples
Figures 4-7 illustrate the variation in output with different
probability values P for the internal generative mode. Figure
3 shows the original head for the tune Donna Lee by Charlie
Parker, labelled with cross-alphabet values calculated from
the sets of unique pitch (p) and rhythmic (r) values shown
above the score. For example, middle-C, p = 3, with a dura-
tion of an eighth note, r = 1, is encoded as (r ⇤25+ p) = 28.



If a high degree of stylistic coherence is desired, using a
higher value for P will produce longer segments of unrecom-
bined material. Note that Figure 5 is stylistically very similar
to the original, but recombined in a novel way, with just a few
of the rhythmic anomalies discussed in the previous section.
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Figure 4: Donna Lee with cross-alphabet labels.
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The anomalies result from the fact that our input alphabet
is comprised of single notes, rather than metric groupings of
notes; the 1-beat triplet embellishments in the original are
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Figure 7: Donna Lee recombined with P = 0.1.

occasionally broken up, causing an interpenetration of duple
and triple meters.

This effect is more pronounced in Figures 6 and 7, where
incomplete triplet figures produce long chains of metric dis-
placement. Using a lower probability in conjunction with an
alphabet that ignores metrical grouping can be interesting if
the goal is to distort the input phraseology. Again, this is an
idiosyncrasy of the one internal generative mode developed
thus far, and can be circumvented. A patch could be made,
for example, to use the center inlet for choosing the next
transition, returning a transition only if it completes the beat
and following a suffix link if no such transition exists.



File I/O
The factorOracle external can write the input string and the
generated output string to disk. These files are simple space-
separated lists of integers. The oracle can read these lists of
integers in two different ways: the second argument in the
body of the object icon can be a read-in file in the Max path,
or a “read” message can be sent to any inlet, with or without
a file argument.

The first argument in the body of the object specifies the
number of states anticipated. Reserving memory for a number
of states vastly improves performance by avoiding frequent
allocating and copying of memory blocks to resize buffers.
The default internal number of states is 10K; if the user
specifies both a state number limit and an input file, enough
memory is allocated for both the input file and the number of
states requested in the first argument. Finally, a “writejson”
message in any inlet writes the graph to disk in a custom
JSON format.

The top-level hash keys shown in Figure 8 are state indices.
The value of each of these keys is an array containing a hash
of end-state–transition key-value pairs, followed by the index
of the state terminating the suffix link. The motivation behind
the JSON hash is to provide a standard way of exporting
the oracle graph for use in other programming environments,
such as Processing.

{"0":[{"1":"0","2":"1"},"-1"],
"1":[{"2":"1"},"0"],
"2":[{"3":"1"},"0"],
"3":[{},"2"]}

Figure 8: JSON representation for factor oracle of ABB.

Planned Improvements
The most recent version of factorOracle is an alpha phase
release, verified to work in Max 7 in 32-bit mode on Mac OS
Mavericks, and is available in an open-source BSD-licensed
version1. A more stable release will be available soon.

In terms of new development, longest repeated suffix com-
putation is first in the queue. A trickier problem is how to
incorporate data from files that are read in after some perfor-
mance input, or how to incorporate performance input after a
file is read in. One idea is to merge the two based on a longest
repeated suffix that preserves the most data from both sets
of information, which means waiting for or expecting some
minimum accumulation of performance data before fully in-
tegrating a read-in file. Performance data and file data are
presently concatenated without concern for any discontinuity
at the point of connection.

Finally, I would like to produce a series of help files show-
ing how to build patches around the external using many of
the analytical and generative methods described in the list
of references here. One important caveat to note: although
the objective of this software is to provide an interface for
both constructing the factor oracle and using it to generate
music in a real-time audio scheduling environment, the ex-
tent to which a patch incorporating the factorOracle external

can generate music in real time will be contingent on the
computational demands of the generative process employed.
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