

Creating an image and animation based body for
associative music visualization in the browser

Balazs Krich
balazs.krich@gmail.com

Abstract
We present an HTML5 application which introduces novel
representations of musical information in the context of the
Web Audio API. The application is human-centered, i.e. it
offers the possibility for the user to upload audio-files and
by default aims to demonstrate the original artwork
associated with the audio file in order to create a visual
environment where musical information can be represented.
The user also has the ability to refine this visual environ-
ment by providing additional metadata, uploading assorted
images or animated GIFs. Finally, musical information is
displayed real-time in this customizable context with the
help of various feature extraction algorithms, including
contour detection and beat tracking.

Keywords: Web Audio API, beat tracking, contour detec-
tion.

1. Introduction
Album artwork is usually much more than a simple illus-
tration provided for popular music: attracting attention
might be the cover’s primal function, but it is also a work
of art in its own right, often complementing, describing
and even framing the music it accompanies. In the digital
age providing a representation of the music that's easily
used for organization and sharing (Graham, Hull 2008)
became even more important as music is mostly available
in non-physical formats, therefore offering visual clues can
make all the difference as opposed to retrieving music only
through textual information.
 Although there is an increasingly high demand for sys-
tems which can process data in a “musically intelligent”
way (Dixon 2001), and information visualization has be-
come a promising alternative for representing musical
metadata (Husain, Shiratuddin, Wong 2013), the illustra-
tion of musical data has mostly been limited to using ab-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
© 2016, Balazs Krich

stract and geometrical forms and shapes – typically con-
sisting of objects with various colors, positions and other
attributes (Nanayakkara et al. 2007) – and it has not been a
key consideration to include original artwork as a body for
representation. Furthermore, music visualizations based on
human computer interaction rarely offer the possibility to
reuse imagery that is well established in the common do-
main – this way providing new layers of understanding for
both the music, the referenced visuals and the created visu-
alization experience as a self-contained unit.
 Our application aims to exploit these formerly
untouched concepts in music visualization by providing
the user the freedom to choose any image or animated GIF
as a base for visualizing music information. By default,
the application will try to retrieve the original cover art
belonging to the uploaded audio-file, but the user can over-
ride this by:
• Performing a free-text search for other cover art
• Uploading any other static image
• Uploading an animated GIF
 After completing the editing of the visualization, pre-
defined feature extraction algorithms perform a real-time
visualization of the uploaded song on the selected imagery.
 In the following sections we will briefly describe
the algorithms that support the application, and provide
examples of the working demo.

2. The application
The application takes a “systems” approach, building on
prior work in beat tracking, image segmentation, online
searching and the Web Audio API – a high-level Java-
Script API designed for real-time processing of audio in-
side the browser through various processing nodes.
 We decided to deploy the application in a Web envi-
ronment mainly because accessibility was a key deciding
factor and we also agree that the Web is ultimately becom-
ing a complete software platform capable of results compa-
rable to hardware-dependent systems (Rawlinson, Segal,

MUME 2016 - The Fourth International Workshop on Musical Metacreation, ISBN #978-0-86491-397-5

Fiala 2015). Unfortunately the Web Audio API currently is
only supported by cutting-edge browsers such as Chrome
and Safari (Choi, Berger 2013) and not all features are dis-
tributed evenly even among these browsers – the applica-
tion offers full functionality only in Chrome as of speak-
ing.

2.1. Collecting metadata
The user can upload any audio-file in .mp3-format – the
number of songs uploaded at a time are not restricted with-
in reasonable size-limitations (100MB / upload). If cover
art, artist name and song title is included in the ID3
metadata encoded in the .mp3-file, the application will
accept these as default – though in many cases data quality
is insufficient for automatic processing. This is because
meta information found in ID3 tags mainly come from
databases like Gracenote or the FreeDB project. Those
databases are generated by a large community of volun-
teers and their input – though very useful in many applica-
tions – is not quality assured (Baumann, Klüter, Norlien
2002). If metadata is only partially filled – for example the
song title is available, but no cover art or artist name is
included – the application will make subsequent requests to
the Discogs RESTful API, which is one of the biggest da-
tabase of audio recordings currently available online
(Brooke 2013), and try to associate an album cover for the
song, while performing rank-based text-transformations on
the available metadata for the most probable match. If find-
ing a match is unsuccessful, the user can still provide an
artist name or a song title and make another request for the
Discogs API to collect the album art, or just upload any
image.

2.2. Generating the visualization background
When an image is successfully retrieved (either encoded in
the .mp3 file, downloaded from the Discogs database or
uploaded by the user), a 30 columns wide and 20 rows high
hexagon grid is built with the help of the D3.js JavaScript
library, allowing dynamic transforms to both generate and
modify content within the standard document object model
(DOM) (Bostock 2011). Simultaneously the associated
cover art is sliced to the same partition (a 30 by 20 grid),
and from each block an average color is extracted. Finally
each hexagon receives the average color of the block in the
same position within the grid, giving a pixelated, 3D-
mimicked illusion of the original cover art in the browser.
 Once the uploaded song is played, real-time frequency
and time-domain analysis information is extracted from the
audio file by setting up an AnalyserNode provided by the
Web Audio API. By setting the Fast Fourier Transform
(FFT) size to 512 – also natively provided by the Web
Audio API – we are able to extract 256 frequency data
values in real-time, and pass these values for SVG-

transformations to every second hexagon object, starting
from the 88th position in the 30 by 20 grid. As a result, the
height of the selected hexagons change according to the
passed frequency value, creating a full-screen frequency
bar graph from the original artwork or associated image.

2.3. Beat tracking
Firmly agreeing to the statement that no computer program
has been developed which approaches the beat tracking
ability of a good musician (Dixon 2006) and considering
that although there have been several comparative studies
of beat tracking performance, there is no current consensus
on which evaluation method to use (Davies, Degara,
Plumbley 2009), introducing a novel solution regarding
beat detection was no criterion for the development of the
application, especially as we needed a feature functioning
in real-time. Instead we settled for a good enough solution
and evaluated our algorithm’s results from a visual point of
view.
 First, we decided on a frequency level (beatMin) which
would be a minimum for registering a beat – i.e. a volume
less than this constant would not be considered a beat.
Then we normalized the frequency data provided by the
AnalyserNode and calculated an average level for all 256
frequency values (beatLevel) at each given frame. When
the beatLevel was higher than the beatMin constant, we
registered the first beat. With each subsequent frame we
reduced the beatLevel value with a previously determined
constant (beatDecayRate), defining another variable for
each frame (beatCutOff). At any frame, if the beatLevel of
the frame was higher than the beatMin and the beatCutOff
value of the previous frame, we registered a new beat, and
the beatCutOff variable became equal to the beatLevel
value of that frame.
 By introducing a beatHoldTime constant – which equals
to the number of frames we decided to hold a beat – and
registering the time passed between two detected beats, we
found that this simple and quite naïve algorithm was suffi-
cient enough to create visualizations that are in sync with
the sound.

2.4. Animating still images to the beat
Once an image is successfully associated with a given
audio file, the application performs contour detection and
hierarchical image segmentation on the image with the
help of the Python binding of Open Source Computer
Vision Library (OpenCV). The result of this operation is
saved in an SVG file format, which contains all detected
objects in the image in a hierarchy, and is included in the
DOM tree.
 When the audio file is played and the user hovers the
cursor on the associated image, the previously generated
SVG objects are projected over the original image. If a

beat is detected, a custom algorithm performs transfor-
mations on a randomly selected number of SVG objects in
the following manner: for each object a random value is
specified from the array of the four cardinal and four inter-
cardinal directions. The object is moved towards the se-
lected direction by a distance determined by the beatLevel
of the actual frame – the louder the volume, the further the
object is moved –, then a shaking effect is applied to the
object, as if a spring would try to retract it to its original
position.
 The result is a visualization performed on any freely
associated image, where the objects detected on the image
move real-time to the beat of the audio file played. A
couple of examples of this behavior are available at:
http://www.balkeyplayer.com/surfsamurai
http://www.balkeyplayer.com/scotty
http://www.balkeyplayer.com/cale

2.5. Looping GIF’s to the beat
The user also has the choice to associate an animated GIF
to the selected audio-file by uploading such a file. If a .gif
file containing more than one frame is detected – i.e. the
GIF is animated –, the Python backend of the application
will save each frame with the help of the ImageMagick
software suite, and pass the path of the images and the
original order of them to the browser, so they can be dis-
played programmatically with JavaScript on the client side.
 If the user hovers the cursor on the uploaded animated
GIF while the audio file is played, the sliced frames will
move to the beat controlled by the following algorithm: the
frame rate by which the images are looped is specified by
the time passed since the last detected beat. The more fre-
quent the beats are, the faster the images are looped – there
is also a lower threshold applied, so the frame rate can not
be lower than a constant specified in a variable. By apply-
ing an upper threshold value, we could also define a phe-
nomenon we labeled as “break point” – this would be the
point in dancing, when the person dancing breaks a harmo-
nious movement and starts a new move, usually performed
when the beat changes or becomes significantly faster. So
if the time between two detected beats is less than the
upper threshold value, the looping of the images randomly
switches direction, i.e. making the animation responsive to
the sequence of the beats played. After fine-tuning parame-
ters through a number of tests we found that the current
settings work out harmoniously with abstract animations
and dancing figures or even short video recordings most of
the time. A couple of examples are available at:
http://www.balkeyplayer.com/moonwalk
http://www.balkeyplayer.com/dynamite
http://www.balkeyplayer.com/hollie-cook
http://www.balkeyplayer.com/daftpunk
http://www.balkeyplayer.com/pulpfiction

3. Conclusion
We demonstrated a working demo capable of embedding
musical information in a freely chosen illustration body:
the user has the ability to display musical data in the origi-
nal artwork, select a still image or animation, and create a
highly associative audiovisual experience in the browser –
this might be of interest to artists looking for new ways to
combine sound and image or to music visualization
researchers. Uploading audio files is available at:
http://www.balkeyplayer.com/

References
Baumann, S., Klüter, A., and Norlien, M. 2002. Using natural
language input and audio analysis for a human-oriented MIR
system. In Proceedings of Web Delivering of Music, 74-81.
Darmstadt, Germany: Second International Conference on Web
Delivering of Music.
Bostock, M. 2011. D³ Data-Driven Documents. IEEE Transac-
tions on Visualization and Computer Graphics, 17(12): 2301-
2309.
Brooke, T. 2013. Descriptive metadata in the music industry:
Why it is broken and how to fix it. Journal of Digital Media
Management 2(3): 263-282.
Choi, H., and Berger, J. 2013. Waax: web audio API extension. In
Proceedings of the international conference on new interfaces for
musical expression, 499-502. Daejeon, Republic of Korea: Inter-
national conference on new interfaces for musical expression.
Davies, M. E. P., Degara, N., and Plumbley, M. D. 2009. Evalua-
tion methods for musical audio beat tracking algorithms, Tech-
nical Report, C4DM-TR-09-06, Centre for Digital Music, Queen
Mary University of London.
Dixon, S. 2001. An interactive beat tracking and visualisation
system. In Proceedings of the international computer music con-
ference, 215-218. Havana, Cuba: International Computer Music
Conference.
Dixon, S. Mirex 2006 audio beat tracking evaluation: Beatroot.
MIREX 2006: 27-30.
Graham, J., and Hull, J. J. 2008. Icandy: a tangible user interface
for itunes. In Proceedings of the Extended Abstracts on Human
Factors in Computing Systems, 2343-2348. Florence, Italy: 26th
CHI Conference.
Husain, A., Shiratuddin, M. F., and Wong, K. W. 2013. A pro-
posed framework for visualising music mood using texture im-
age. In Research and Innovation in Information Systems, 263-
268. Kuala Lumpur, Malaysia: 2013 International Conference on
Research and Innovation in Information Systems.
Nanayakkara, S., Taylor, E., Wyse, L., and Ong, S. H. 2007. To-
wards Building an Experimental Music Visualizer. In Proceed-
ings of the sixth international conference on Information, Com-
munication and Signal Processing, 1-5. Singapore: Sixth interna-
tional conference on Information, Communications, and Signal
Processing.
Rawlinson, H., Segal, N., and Fiala, J. 2015. Meyda: an audio
feature extraction library for the web audio api. In Proceedings of
the 2015 Web Audio Conference. Paris, France: 2015 Web Audio
Conference.

