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Abstract

In this papers, we discuss a computational model of
a jazz session toward realizing a human-computer-
collaborated automatic jazz session system that is sta-
tistically trainable using jazz session data. In contrast
to previous studies that required human-labeled data of
human sensation to analyze the intentions of players,
our model is solely based on statistics by assuming that
the training data of jazz sessions consist of good com-
bination examples of playing styles by multiple musi-
cal instruments to exclude heuristics. For this purpose,
the musical performance of an instrument is regarded
as a vector trajectory in the feature space along time
and is approximated by stochastic state transitions with
co-occurrence among other instruments for trainability
using sparse data. Therefore, the session model con-
sists of three elements: a stochastic state transition, state
co-occurrence between instruments, and correlation be-
tween musical performances. A hidden Markov model
(HMM) can effectively represent such a session model.
This paper focuses on clustering methods for reducing
the dimensionality of the feature vector by comparing
three methods: k-means, the gaussian mixture model
(GMM), and non-negative matrix factorization (NMF).
The experimental results show that NMF-based cluster-
ing yielded the highest prediction accuracies using both
a trigram and the HMM.

Introduction
We previously developed an automatic accompaniment sys-
tem (called Eurydice (Nakamura et al. 2013)) that allows
tempo changes and note insertion/deviation/substitution er-
rors in human performance as well as repeats and skips,
while other automatic accompaniment systems (Dannenberg
1984) cannot handle such long jumps. As the next step, we
are working on an automated jam session system that can
follow improvised human performances.

Jam sessions consist of frequently improvised part like
jazz, where the players improvise on a score, listen to the
performance of others, anticipate their intentions from their
previous performances, score information, and interplay.
This differentiates the system from a simple extension of an
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automatic accompaniment system, since a jam session sys-
tem yields various performances from a human performance
and is expected to have a function of composition.

Therefore, jam session systems must estimate the other
players’ intentions and output a matching performance.
Most previous jam session systems observed the human
performance, extracted musical features, predicted the next
performance using heuristically determined parameters, and
generated a matching performance.

In contrast to non-proactive systems (Rowe 1992; Aono,
Katayose, and Inokuchi 1994; 1995; Nishijima and Watan-
abe 1992), where parameters were determined prior to the
session, JASPER (Wake et al. 1994) and VirJa Session
(Goto et al. 1996) dealt with a piano trio (piano, bass,
drums) proactively and interactively in jazz sessions. This
system could generate an expressive performance by in-
stantaneously reacting other players’ performances by using
variable parameters, although this system could not apply
a long-range plan of the performance in an actual human
performance because these parameters and rules were set
statically. Guitarist Simulator (Hamanaka et al. 2004) could
learn the reaction model of an actual player, but the correla-
tion between the actual performance and the reaction model
was determined through psychological experiments involv-
ing a particular participant.

This paper takes a statistical approach to exclude heuristic
rules and the human labeling of training data as much as
possible.

Session model
Our goal is to build a statistically trainable mathematical
model without using subjective rules. In other words, we aim
to make it possible to identify the current state of a perfor-
mance from actual human performance data and scores. For
this purpose, we exclude as many heuristic/subjective theo-
ries and approaches through psychological quantities as pos-
sible, hoping that our approach will lead to a mathematical
model of mutual cooperative sessions, not limited to within
music, that will be trainable using session data without re-
quiring human labeling.

Fig.1 shows a conceptual block diagram of our ultimate
system. In this paper, we chose a jazz piano trio as a config-
uration example. Input and output data are supplied as MIDI
data for ease of obtaining and dealing with the performance
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Figure 1: Conceptual block diagram

data.
To represent a musical performance mathematically, we

start with a high-dimensional space that includes all possible
musical events. Given the ideal space of musical events W

enclosing all events related to the music, this space is com-
posed of, for instance, information about notes (such as the
number of notes, note values, and volumes), gestures, eye
contact, and so forth. The music at a given time can be de-
scribed by a scatter point in the space. Thus, a musical per-
formance is expressed by a trajectory T . Hence, the musical
performance is expressed as (W,T ) in the space of musical
events.

In a piano trio, the performances of the participating mu-
sical instruments are given as trajectories in this space un-
der certain constraints, in accordance with the conventions
of jazz sessions. Firstly, in the case of a piano, the perfor-
mance is ruled by a time constraint based on the previous
performance for musical naturalness. Therefore, the stochas-
tic deviation of the trajectory between times t and t + 1 is
restricted within a certain range. Secondly, since the pianist
interacts with other players, the trajectory is also influenced
by them. The bassist and drummer are also influenced by the
pianist. In other words, each trajectory has co-occurrence
and a correlation with the other trajectories. On the other
hand, most of the previously proposed session systems at-
tempted to design a model of the instantaneous interaction
between a human and a computer, as opposed to our model
of participating instruments, each following a musical flow
and interacting with other instruments.

There are two major practical problems in dealing with a
statistically trainable model for these trajectories: continuity
and high dimensionality. In an ideal case where an unlim-
ited amount of data are available, we would be able to sta-
tistically estimate the trajectories, co-occurrence, and corre-
lations. However, we have a limited amount of data. Thus,
we must reduce the dimensionality of the space of musical
events and discretize the space and trajectories.

To reduce the dimensionality of W, we extract feature pa-
rameters to store information relevant to the jam session. We
defined such features as style parameters. To discretize the
trajectories, we split the space into subspaces by clustering
of the style parameter vectors. If we can assume that the
style parameter vectors carry sufficient information on the
session states and that the discretized space maintains a suf-
ficient space resolution, it will be possible to characterize

Figure 2: Mathematical model in the case of the piano trio

trajectories with statistical parameters to automatize the ses-
sion process.

On this basis, we formulate the model as a hidden Markov
model (HMM). In the HMM, the performance of each
musical instrument is represented by a time sequence of
style vectors and approximated by centroids along multi-
ple hidden-state transitions. The interplay in the session is
represented by the co-occurrence between hidden states in
distinct HMMs. Moreover, variation beyond the space reso-
lution can be added by including a deviation from the cen-
troids based on the statistical correlation between musical
instruments. Fig.2 depicts this mathematical model in the
case of a piano trio session.

Therefore, the outline of the statistically trainable session
model in Fig.1 consists of three stages: stochastic state tran-
sitions, co-occurrence between instruments, and correlation
between performances. First, each style parameter vector is
extracted from the human performance over time. Second,
the time series of the feature vector forms a trajectory and
is formulated as stochastic state transitions in an HMM to
identify the current state using the Viterbi algorithm. Third,
a performance data having the style parameters of the coun-
terparts are retrieved from a database or are automatically
generated using the style parameters, and the performances
is output.

Style parameters
We wanted to set an effective axis in the session model. We
selected parameters closely related to the jazz session on the
basis of musical knowledge and call them style parameters.
In our present research, we assumed MIDI-format data as
the observation input from multiple jam sessions with a con-
stant tempo to enable us to extract feature parameters at ev-
ery unit time (every bar or every beat in later sections). We
defined 68 parameters that are extractable from the music
performance at every unit time as follows:

• Piano-specific features
– The number of notes composed of diatonic chords,

and the character of notes such as tension notes, avoid



notes, and blue notes.
– The range between the highest and lowest tones.

• Bass-specific features

– The range between the highest and lowest tones.

• Drums-specific features

– Each number of notes of the hi-hat cymbal, snare drum,
and crash cymbal.

• Common features

– The number of notes, the number of simultaneous
sounds, the average velocities.

– The ratio of the above features between adjacent time
spans.

– The ratio of sum of the above features throughout the
music.

– The ratio of off-beat notes to all notes in the unit time.

Clustering
To discretize the space with the reduced dimension, we ap-
plied a clustering algorithm to describe the trajectory and
to train the HMM from musical performance data. Since
there are various clustering algorithms, we compared three
methods for clustering: (1) k-means clustering, (2) Gaussian
mixture model (GMM), and (3) non-negative matrix fac-
torization (NMF). In the training phase, k-means clustering
is based on a hard decision while the GMM and NMF are
based on a soft decision and are considered to be effective in
the case of a limited amount of training data.

k-means clustering
K-means clustering classifies each data point into the clus-
ter whose centroid is closest to the data point. The data are
a sequence of vectors of style parameters extracted from
the MIDI data. Prior to the k-means process, to reduce the
dimensionality of the observation vector, principal compo-
nent analysis (PCA) was applied with a threshold cumula-
tive contribution ratio of 90%.

Gaussian mixture model (GMM)
The GMM is a model for approximating a distribution
by a mixture of normal distributions. The expectation-
maximization algorithm (EM algorithm) is generally used
for training the model. This algorithm is an iterative method
alternately applying an E-step to calculate the expectation
of the likelihood and an M-step to update the parame-
ters by maximizing the likelihood. Given m vectors XXX =
(xxx1,xxx2, · · · ,xxxm), we assign each of them to an appropriate
cluster out of k clusters C =(c1,c2, · · · ,ck). q is a mixture pa-
rameter consisting of Gaussian means, variances, and mix-
ture coefficients. Equivalently, instead of maximizing the
likelihood function, we maximize the Q-function, which is
expressed as follows.

Q(q,q0) =
M
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As the log likelihood increases monotonically, q

0 is up-
dated until the increment becomes smaller than a preset
value used as a convergence criterion.

After training, each vector is assigned to the class with
the highest probability. We applied PCA to reduce the di-
mensionality in the same way as in k-means clustering.

Non-negative matrix factorization (NMF)
NMF is a method for factorizing a non-negative matrix into
a pair of non-negative matrices with a lower rank (Lee and
Seung 2000) and has also been used as a method for clus-
tering (Kim and Park 2008). Given a non-negative original
matrix X , it is approximated by a product of non-negative
matrices

X ⇡ HU, (1)
where H is the basis matrix and U is the activation matrix.

To derive an iterative formulae from (1), we obtain
Xi, j ⇡

Â

k
Hi,kUk, j,

where k denotes the index of the basis vector. H and U
are initialized with random values. To define the criterion
for approximation, a distance measure between X and HU
is usually selected from the Euclidean distance, Kullback-
Leibler divergence, or Itakura-Saito divergence. In the case
of Kullback-Leibler divergence,

dKL(xi j,hi,u j) =
I

Â
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xi j log
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The selected divergence is minimized to find the optimal
H and U using an iterative algorithm derived from the above
formulae using auxiliary functions. The resulting update
rules differ according to the divergence. Using the method
of the Lagrange multiplier, we obtain
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Â j

xi j
x̂i j
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After convergence, each input vector is assigned the class
of the basis vector with the largest activation, i.e.,

ck(x j) = arg max
k

uk j. (2)

To scale the basis vectors, we normalize them as follows:

Â

i
hik = 1.



Experimental evaluation
Computing and evaluation methods
Both an N-gram and an HMM can represent the trajectory
of a musical performance expressed by stochastic state tran-
sitions in the discretized space. To select the most suitable
method for clustering, we evaluated the methods (k-means
clustering, GMM, NMF) from the prediction results of both
an N-gram and an HMM when analyzing 13 MIDI data from
Yamaha Music Datashop with different time units, bar units
and beat units. The number of clusters was varied from 6 to
29.

The accuracy was evaluated through cross validation. In
the case of k-means clustering, the means of the sample data
were used to assign cluster numbers to the test data. Simi-
larly, in the GMM, the average and covariance of the sample
data were used. In NMF, the activation matrix U was given
by using the original matrix X and the generalized inverse
matrices of the basis matrix H+of the sample data.

Usample = H+
sampleXsample

Utest = H+
sampleXtest

Then cluster numbers were assigned by (2).

Trigram
In an N-gram, given n states P(s1,s2, · · · ,sn), the chain prob-
ability is given as follows:

P(s1s2 · · ·sn) =
n

’

i=1
P(si|si�N+1 · · ·si�1).

For a trigram, the number of transitions from i� 2 to i is
expressed by N(si

i�2) and the chain probability is given as

P(wi|wi�1
i�2) =

N(wi
i�2)

N(wi�1
i�2)

.

Hidden Markov model
The HMM is a tool for representing the probability over se-
quences of observation. We regard the hidden states as the
performance styles and the cluster numbers observed from
these states as the musical performances. The state transi-
tion probability ai j (the transition probability between i and
j) and the observation symbol probability bi(o(t)) (the ob-
servation symbol probability of state i at time t) are com-
puted by the Baum–Welch algorithm. From a forward vari-
able at(i) describing the probability of state i at time t, a
backward variable bt(i) as the probability of state i at time
t, and the likelihood Pr[O|l], the E-step is computed as fol-
lows:

xt(i, j) =
at(i)ai jb j(ot+1)bt+1( j)

Pr[O|l] ,

gt(i) =
at(i)bt(i)
Pr[O|l] .

Figure 3: Prediction accuracy for beat-unit time resolution
(trigram)

Figure 4: Prediction accuracy for bar-unit time resolution
(trigram)

From these formulae, ai j and bi(k) are updated in the M-
step as follows:

ai j =
Â

T�1
t=1 xn(i, j)

Â

T�1
t=1 gt(i)

,

bi(k) =
Â

T
t=1,s.t.o(t)=k gt(i)

Â

T
t=1 gt(i)

.

The prediction is given by the forward algorithm.

Prediction results
The experimental results of the prediction using the trigram
are shown in Fig.3-4 and the HMM are shown in Fig.5-6.
The time resolution of Fig.3 and Fig.5 is a beat unit and that
of Fig.4 and Fig.6 is a bar unit. X axis illustrates the num-
ber of clusters and the Y axis illustrates the accuracy rates.
The blue line shows the accuracy rates for k-means cluster-
ing, the green line shows that for the GMM, and the red line
shows that for NMF. Different types represent different in-
struments. For example, the solid line shows the accuracy
rate when using all the style parameters and the chain line
shows that when only using the style parameters related to
the piano. These figures show that NMF achieved the highest



Figure 5: Prediction accuracy for beat-unit time resolution
(HMM)

Figure 6: Prediction accuracy for bar-unit time resolution
(HMM)

prediction accuracy, in particular, a higher ratio was shown
for the beat-unit time resolution. With increasing sparsity of
the original matrix, the prediction accuracy tends to rise.

To consider the reason for these results, the vector data
of a face photo is approximated by NMF and the basis ma-
trix accurately expresses parts of a face such as the eyes,
nose, and mouth, and the face is expressed by this additive
combination. Similarly, the style parameters are neither in-
dependent nor completely dependent. Fig.7 shows heat maps
of basis matrix and Fig.8 shows those of activation matrix.
Both the horizontal axis of the basis matrix and the vertical
axis of the activation matrix represent the class number. The
vertical axis of the basis matrix represents the style param-
eter and the horizontal axis of the activation matrix shows
the performance time. We can see from Fig.7 and Fig.8 that
the basis and activation matrices are sparse. Each column
of the basis matrix represents a characteristic of the music.
Therefore, the additivity of NMF and the character of style
parameters might yield high prediction accuracy similarly
the case of a face photo.

In addition, the GMM yielded slightly higher prediction
accuracy than k-means clustering. It is speculated that soft
clustering is more effective than hard clustering in this prob-
lem. On the other hand, although both the GMM and NMF

Figure 7: Basis matrix for beat units (number of clusters: 25)

Figure 8: Activation matrix for beat units (number of clus-
ters: 25)

are soft clustering methods, higher prediction accuracy was
obtained by NMF. Further work is needed to clarify the rea-
son for this.

Co-occurrence
Although the prediction accuracies were computed using
four pattern (the style parameters of all instruments, only
piano, only bass, and only drums), our model includes the
co-occurrence between instruments, making it necessary to
determine whether there is co-occurrence and whether it is
possible to obtain a higher prediction accuracy by including
co-occurrence. Table 1-2 show the conditional probabilities
P(Bassk|Pianok) and P(Drumsk|Pianok) calculated by us-
ing the cluster number in NMF, where the number of cluster
is six and k it the cluster number. Table 3-4 show the con-
ditional probabilities calculated by using the hidden states
in the HMM, where the number of hidden states is six. k is
the state number. These states were assigned by the Viterbi



Table 1: Conditional probabilities (piano-bass / bar-unit time
resolution, number of clusters: 6)

cluster number
(bass/bar)

State
number

(piano/bar) 0 1 2 3 4 5
0 0 0 0 0 0 1
1 0.023 0.048 0.014 0.114 0.786 0.016
2 0.062 0 0.021 0.229 0.292 0.396
3 0.007 0.013 0.009 0.092 0.866 0.012
4 0.031 0.041 0.004 0.156 0.757 0.011
5 0.102 0.02 0 0.061 0.102 0.714

Table 2: Conditional probabilities (piano-drums / bar-unit
time resolution, number of clusters: 6)

cluster number
(drums/bar)

State
number

(piano/bar) 0 1 2 3 4 5
0 0 0 1 0 0 0
1 0.134 0.027 0.027 0.002 0.775 0.034
2 0.062 0.375 0.208 0 0.312 0.042
3 0.085 0.066 0.015 0.001 0.762 0.072
4 0.155 0.099 0.025 0.004 0.606 0.112
5 0 0.184 0.02 0 0.224 0.571

algorithm. The time resolution is a bar unit. Table 1 and ta-
ble 3 show that the performance of the bass is effected by
the performance of the piano. The conditional probabilities
of P(Drumsk|Pianok) is also stochastic deviation. In other
wards, there are stochastic deviations in the performances
of all instruments. Hence, it is expected that we can predict
the musical performance with more precision by including
co-occurrence in the mathematical model of a jazz session.

Conclusions
We first described a statistically trainable session model that
is based on the two phases to represent the trajectory of
musical performances and three elements to predict them.
To represent the trajectory as trainable model from actual
musical data, we discretized the trajectory and expressed
the space nonlinearly and continuously. Additionally, we se-
lected style parameters that are closely related to the jazz
session on the basis of musical knowledge. The stochastic
state transitions expressing the discretized trajectory of mu-
sical performances were represented by an HMM with co-
occurrence between the hidden states of all instruments to
model their interaction with the correlation given by the de-
viation from the centroid of the hidden states.

Secondly, to select the clustering method for quantizing
the event space and discretizing the trajectory, we evaluated
three clustering methods. (k-means, GMM, and NMF) by
computing the prediction accuracy using both a trigram and
the HMM. As a result, NMF yielded the highest prediction
accuracy for bar, beat time solutions for both the trigram
and the HMM. To express and to presume the musical per-

Table 3: Conditional probabilities (piano-bass / bar-unit time
resolution, six-state HMM)

Hidden state number
(bass/bar)

State
number

(piano/bar) 0 1 2 3 4 5
0 0.02 0.367 0 0.143 0.041 0.429
1 0.143 0.014 0 0.146 0 0.708
2 0.021 0.125 0 0.146 0 0.708
3 0.183 0.033 0.05 0.033 0.655 0.05
4 0.146 0.166 0.099 0.13 0.439 0.019
5 0.127 0.137 0.095 0.064 0.565 0.012

Table 4: Conditional probabilities (piano-drums / bar-unit
time resolution, six-state HMM)

Hidden state number
(drums/bar)

State
number

(piano/bar) 0 1 2 3 4 5
0 0 0.041 0.204 0.245 0 0.51
1 0.033 0.048 0.054 0.057 0.73 0.078
2 0.042 0.604 0 0 0.104 0.25
3 0.067 0.117 0.05 0.033 0.617 0.117
4 0.011 0.157 0.122 0.127 0.296 0.287
5 0.005 0.049 0.073 0.076 0.699 0.098

formance effectively, we consider that soft clustering and a
sparse basis matrix and activation matrix are effective.

In addition, the conditional probabilities between piano
and other instruments show that there are stochastic devia-
tions in the performances of all instruments. Therefore, we
can utilize these results to predict the musical performance
more precisely.

Finally, we claim that this model has flexibility. For in-
stance, group work with a robot, the reactions of human
and many animals, and the dynamics of natural phenom-
ena might be expressed by our model. Moreover, because
the model is trainable only using actual observable data and
does not include heuristic rules, it can continue to be develop
if we could obtain a large amount of learning data.

We plan to build a prototype Jazz editing system that uses
NMF and HMM. The system can generate MIDI data of
a piano trio from that of piano to edit a bass and drums
parts in case data by batch processing on the off-line. We
also plan to rebuild the mathematical model as the dynamic
Bayesian network (DBN) including the HMM to compute
the co-occurrence between all instruments. Additionally, if
the co-occurrence between all instruments is given a certain
degree of freedom, it might be possible to express the per-
sonalities of players because the computer players could de-
cide their musical performances proactively without depend-
ing on the performances of the other players. Furthermore,
we will use a deep neural network (DNN) for interpolation
to deal with the trajectories expressing music continuously
rather than discretely.



References
Aono, Y.; Katayose, H.; and Inokuchi, S. 1994. Devel-
opment of Band-like Musical Assistant System. IPSJ SIG
Technical Reports, 94-MUS-8 94(103):45–50.
Aono, Y.; Katayose, H.; and Inokuchi, S. 1995. An Im-
provisational Accompaniment System Obseving Performers
Musical Gesture. Proc. ICMC 1995:106–107.
Dannenberg, R. B. 1984. An On-line Algorithm for Real-
time Accompaniment. Proc. ICMC 1984:193–198.
Goto, M.; Hidaka, I.; Matsumoto, H.; Kuroda, Y.; and Mu-
raoka, Y. 1996. A Jazz Session System for Interplay among
All Players - VirJa Session (Virtual Jazz Session System).
Proc. ICMC 1996:346–349.
Hamanaka, M.; Goto, M.; Asoh, H.; and Otsu, N. 2004. Gui-
tarist Simulator: A Jam Session System Statistically Learn-
ing Players Reactions. IPSJ Journal 45(3):698–709.
Kim, J., and Park, H. 2008. Sparse nonnegative matrix fac-
torization for clustering. Technical Report GT-CSE-08-01,
Georgia Institute of Technology 2008.
Lee, D. D., and Seung, H. S. 2000. Advances in Neural
Information Processing Systems. 13:556–562.
Nakamura, E.; Takeda, R.; Yamamoto, R.; Saito, Y.; Sako,
S.; and Sagayama, S. 2013. Score Following Handling Per-
formances with Arbitrary Repeats and Skips and Automatic
Accompaniment. IPSJ Journal 54(4):1338–1349.
Nishijima, N., and Watanabe, K. 1992. Interactive Music
Composer on Neural Networks. Proc. ICMC 1992:53–56.
Rowe, R. 1992. Machine Listening and Composing with
Cypher. Computer Music Journal 16(1):43–63.
Wake, S.; Kato, H.; Saiwaki, N.; and Inokuchi, S. 1994. Co-
operative Musical Partner System Using Tension-Parameter:
JASPER (Jam Session Partner). Trans. IPS Japan
35(7):1469–1481.


