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Abstract

This research explores the generation of melodies
through the creation of a probabilistic analytical model
of melodies. Using a Natural Language Processing tech-
nique utilized for the automatic reduction of melodies:
the Probabilistic Context-Free Grammar (PCFG), it is
possible to reduce new incipit melodies, or to gener-
ate and embellish melodies. Automatic melodic reduc-
tion has been previously explored by means of a prob-
abilistic grammar (Gilbert and Conklin 2007) (Abdal-
lah and Gold 2014). However, these methods used un-
supervised learning to estimate the probabilities for the
grammar rules rather than a corpus-based evaluation.
A treebank of analyses using the Generative Theory of
Tonal Music (GTTM) exists (Hamanaka, Hirata, and
Tojo 2007), which contains 300 Western tonal melodies
and their corresponding melodic reductions in tree for-
mat. In this work, a new representation of the GTTM
grammar is created using a higher-level representation
based on intervals. Then, supervised learning is used to
train a PCFG on the treebanks with different versions
of the new data representation. The resulting model is
evaluated on its ability to create accurate reduction trees,
and its ability to generate melodies is subjectively ex-
plored. With this approach, each generated melody will
not only be a sequence of pitches, but also a hierarchical
structure containing the melodic reduction of the gen-
erated melody. Multiple data representations are tested,
and example output reductions—and embellishments—
are shown. Based on the comparison of output trees with
their corresponding solution trees, the best-performing
PCFG was the one trained on prolongational reductions.

Introduction

Melodic reduction is the process of finding the more struc-
tural notes in a melody. Through this process, notes that
are deemed less structurally important are systematically re-
moved from the melody. This work aims to model the pro-
cess of reducing melodies using probabilistic methods, and
to then reverse the process to generate or embellish new
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melodies. First, it is important to understand the music the-
oretical background of utilizing tree structures for melodic
reduction.

Composers have long used the rules of ornamentation to
elaborate certain notes. In the early 20th century, music the-
orist Heinrich Schenker developed a hierarchical theory of
music reduction (a comprehensive list of Schenker’s pub-
lications was assembled by David Beach (Beach 1969)).
Schenker ascribed each note in the musical surface as an
elaboration of a representative musical object found in the
deeper levels of reduction.

In the 1980s, another theory of musical reduction was
detailed in GTTM (Lerdahl and Jackendoff 1983). The
authors’ goal was to create a formally-defined generative
grammar for reducing a musical piece. In GTTM, every mu-
sical object in a piece is subsumed by another musical ob-
ject, which means that the subsumed musical object is di-
rectly subordinate to the other. In detailing this process, Ler-
dahl and Jackendoff begin by breaking down metrical hi-
erarchy, then move on to identifying a grouping hierarchy
(separate from the metrical hierarchy). Finally, they create
two forms of musical reductions using the information from
the metrical and grouping hierarchies—the time-span reduc-
tion, and the prolongational reduction. The former details
the large-scale grouping of a piece, while the latter notates
the ebb and flow of musical tension in a piece.

Many researchers have taken the idea—inspired by
GTTM or otherwise—of utilizing formal grammars as a
technique for reducing or even generating music (detailed
in Section ). A dataset for the music-theoretical analysis of
melodies using GTTM has been created in the pursuit of im-
plementing GTTM as a software system (Hamanaka, Hirata,
and Tojo 2007). This dataset contains 300 Western classical
melodies with their corresponding reductions, as notated by
music theorists educated in the principles of GTTM. Each
analysis is stored as a tree structure, which id directly com-
patible with computational grammars and their correspond-
ing parse trees. The GTTM dataset is the corpus used for the
supervised PCFG detailed in this paper.

This work was inspired by previous research on a PCFG
for melodic reduction (Gilbert and Conklin 2007), in which
a grammar was designed by hand to reflect the com-
mon melodic movements found in Western classical mu-
sic, based on the compositional rules of ornamentation. Us-



ing that hand-made grammar, the researchers used a dataset
of melodies to calculate the probabilities of the PCFG us-
ing unsupervised learning. This research aims to simulate
and perform the process of melodic reduction, using a su-
pervised Probabilisitic Context-Free Grammar (PCFG). Fur-
thermore, this work explores the possibilities of generat-
ing new melodies with the probabilistic model of hierarchi-
cal melodic structure. By utilizing a ground-truth dataset, it
is possible to directly induce a grammar from the solution
trees, creating a unique set of production rules and mod-
elling the probabilities for each rule expansion. Different
data representations will be explored and evaluated based on
the accuracy of their resulting parse trees. A standard metric
for tree comparison is used, and example melodic reductions
will be displayed.

The structure of this paper is as follows: The follow-
ing section provides a brief history of implementations of
GTTM, as well as an overview of formal grammars used for
musical purposes. Section 3 presents the theoretical foun-
dations of inducing a probabilistic grammar. Section 4 de-
scribes the data set that will be used, giving a more detailed
description of the data structure available, and the differ-
ent types of melodic reductions that were notated. Section
5 describes the framework built for converting the input data
type to an equivalent type that is compatible with a PCFG.
Section 6 presents the experiment, giving a detailed account
of the data representations used, as well as the comparison
and evaluation method, and the results of the different tests
performed. Section 6 also provides some experimental work
in modelling harmony. Section 7 provides some closing re-
marks.

Literature Review

In order to reduce a melody, a hierarchy of musical events
must be established in which more important events are at
a higher level in the hierarchy. Methods that create such
a structure can be considered to be in the same space as
melodic reduction, although some of these methods may ap-
ply to polyphonic music as well. The current section details
research regarding hierarchical models for symbolic musical
analysis.

Grammars in Music

In 1979, utilizing grammars for music was already of much
interest, such that a survey of the different approaches was
in order (Roads and Wieneke 1979). Ruwet (Ruwet 1975)
suggested that a generative grammar would be an excel-
lent model for the creation of a top-down theory of mu-
sic. Smoliar (Smoliar 1976) attempted to decompose mu-
sical structure (including melodies) from audio signals with
a grammar-based system.

Baroni et al. (Baroni et al. 1982) also created a gram-
matical system for analyzing and generating melodies in
the style of Lutheran chorales and French chansons. The
computer program would create a completed, embellished
melody from an input that consisted of a so-called “primi-
tive phrase” (Baroni et al. 1982, 208).

Baroni and Jacoboni designed a grammar that was uti-
lized to analyze and generate melodies in the style of

major-mode chorales by Bach (Baroni and Jacobini 1975;
Baroni and Jacoboni 1978). The output of the system would
generate the soprano part of the first two phrases of the
chorale.

Probabilistic Grammars

Gilbert and Conklin (Gilbert and Conklin 2007) designed
a PCFG for melodic reduction and utilized unsupervised
learning on 185 of Bach’s chorales from the Essen Folk-
song Collection. This grammar was also explored by Abdal-
lah and Gold (Abdallah and Gold 2014), who implemented
a system in the logical probabilistic framework PRISM for
the comparison of probabilistic systems applied to automatic
melodic analysis. The authors implemented the melodic re-
duction grammar provided by Gilbert and Conklin using two
separate parameterizations and compared the results against
four different variations of Markov models. The evaluation
method was based on data compression. Tested over four
separate subsets of the Essen Folksong Collection, the au-
thors found that the grammar designed by Gilbert and Con-
klin was the best performer with 2.68 bits per note over
all the datasets. The same authors also collaborated with
Marsden (Abdallah, Gold, and Marsden 2016) to detail an
overview of probabilistic systems used for the analysis of
symbolic music, including melodies.

Hamanaka et al. also used a PCFG for melodic reduc-
tion (Hamanaka, Hirata, and Tojo 2015). The authors used
the dataset of treebanks that they had previously created
(Hamanaka, Hirata, and Tojo 2007) to run supervised learn-
ing on a custom-made grammar that he designed, in order to
automatically generate time-span reduction trees. This work
is very similar to the work presented here, with two ex-
ceptions. First, the grammar was not learned from the data.
Secondly, Hamanaka used a series of processes on the test
melodies using previous systems he had built. This is in
contrast with the current work, which attempted to encap-
sulate the GTTM process solely in a grammar. These sys-
tems notated the metrical and grouping structure of the input
melody, before inputting that data into the PCFG. Hamanaka
achieves a performance of 76% tree accuracy.

Similar Methods for Musical Reduction

Creating a system that can perform a musical reduction
according to the theory of Heinrich Schenker has also
been the topic of much research. Marsden explored the
use of Schenkerian reductions for identifying variations of
melodies (Marsden 2010). PCFGs have not yet been utilized
for this particular task. One notable caveat is the probabilis-
tic modelling of Schenkerian reductions, using a tree-based
structure (Kirlin 2014). Kirlin did not explicitly use a PCFG,
however his model was quite similar, and also was a super-
vised learning method.

Supervised Learning of a PCFG

Grammars were formalized by Chomsky (Chomsky 1956)
and extended by himself (Chomsky 1959) and Backus et
al. (Backus 1959). Grammars are composed of a series of
production rules, which specify the relationships between



terminals (tokens like ‘dog’ or ‘walk’) and non-terminals
(which can be expanded in to sequences of non-terminals or
terminals). Each production rule has a right-hand side, that
represents the expansion of the term found on the left-hand
side. In a Context-Free Grammar (CFG), the left-hand side
consists of a single non-terminal, and the right-hand side
consists of a sequence of non-terminals and terminals. Given
a CFG and an input sequence of terminals, the sequence can
be parsed, creating a hierarchical structure by recursively
finding all applicable rules, until a tree structure is formed.

Probabilistic CFGs extend the CFG by also modelling
the probabilities of each right-hand side expansion for ev-
ery production rule. The sum of probabilities for all of the
right-hand side expansions of each rule must sum to 1, al-
though in practice this constraint is sometimes loosened.

Once a PCFG is calculated, it is possible to find the most
probable parse tree, by cumulatively multiplying each pro-
duction rule’s probability throughout the tree, for every pos-
sible parse tree.

Inducing a PCFG

When a set of parse tree solutions (called a treebank) exists
for a particular set of input sequences, it is possible to con-
struct the grammar directly from the data. In this process,
each parse tree from the treebank will be broken apart, so
that the production rule at every branch is isolated. A gram-
mar will be formed by accumulating every rule that is found
at each branch in each tree, throughout the entire treebank.
This new grammar is not identical to the grammar of GTTM,
but an equivalent representation that is more conducive to
melodic generation. When a rule and its corresponding ex-
pansions occurs multiple times, the probabilities of the right-
hand side expansion possibilities are modelled. Inducing a
PCFG is a form of supervised learning.

GTTM Dataset

The GTTM dataset contains the hierarchical reductions
(trees) of melodies in an Extensible Markup Language
(XML) representation.

There are two different types of reduction trees that are
created with the theories in GTTM: time-span reduction
trees, and prolongational reduction trees. The time-span re-
duction is built upon the grouping structure analysis pro-
vided in GTTM, which in turn uses the metrical structure
analysis to influence its decision-making. Time-span reduc-
tion trees are generally more reliant on the metrical infor-
mation of a piece, since they utilize the grouping structure
directly. The prolongational reductions are designed to no-
tate the ebb and flow of tension and progression in a piece. In
fact, in GTTM, the prolongational reductions use time-span
reduction trees as a starting point, but then build the branch-
ing system from the top, down, based on pitch and harmonic
content in addition to the time-span information.

The entire dataset consists of 300 melodies, with analy-
ses for each. However, the prolongational reduction trees are
only provided for 100 of the 300 melodies, while the time-
span trees are provided for all 300 melodies. The prolonga-
tional reductions require the annotations of the underlying

harmony. Likewise, there are only 100 harmonic analyses in
the dataset.

Forming the PCFG

When learning a grammar directly from a dataset of an-
notations, the most important decision to make is the data
representation. The representation chosen should be able to
capture the most relevant characteristics of the data. Simi-
lar to Gilbert and Conklin (Gilbert and Conklin 2007), each
rule models two consecutive intervals in a sequence of three
notes, and had the following form (notes labelled as nl
through n3):

interval,i n3 — intervalpy n2 intervalys nz (1)

The motivation was that melodic rules often involve a se-
quence of 3 notes. This is true for the passing tone, neigh-
bor tone, cambiata, and the escape tone. The repetition rule
would normally require only two notes, however to keep a
consistent format, repetitions were only reduced when three
consecutive notes of the same pitch were found, which were
then reduced to two notes of the same pitch (creating one
interval). This form of one interval expanding into two con-
secutive intervals for the grammatical rules was adopted for
this research.

A Framework for Converting Trees

Utilizing a representation that required a sequence of two in-
tervals in every right-hand expansion presented a problem,
because the GTTM reduction trees were in a format that as-
sociated pairs of notes at each branch intersection—not the
three consecutive notes required for the two consecutive in-
tervals. Given this challenge, a framework was developed to
convert the note representation of the GTTM data into the
interval notation desired, and to build the corresponding tree
structure using the interval representation.

An example GTTM tree is shown in Figure 1. Note that
at the end of every branch is a single note. An algorithm
was developed to allow the conversion of these note-based
trees to any interval representation desired, based on a se-
quence of 3 notes. The algorithm traverses the tree from the
top, down, in a breadth-wise fashion. At each level of depth,
the sequence of notes at that depth are broken into sets of 3
consecutive notes, and their intervals are computed. Figure
2 highlights the breadth-wise traversal process.

The framework was built in Python'. It takes a function
as input, which allows the user to define unique interval rep-
resentations.

Training/Induction

The Python-based Natural Language Toolkit (NLTK) was
used for the process of PCFG induction (Loper and Bird
2002). Given a treebank of solutions, the process for induc-
ing a PCFG is described as follows. For every tree in the
treebank, traverse through the tree to identify each branch-
ing location. For every branching location, create a rule with

Thttps://github.com/bigpianist/SupervisedPCFG_MelodicReduction
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Figure 1: The prolongational reduction tree for half of
the first melody in the GTTM dataset, Frédéric Chopin’s
“Grande Valse Brillante”, as displayed in the GTTM visu-
alizer provided by Hamanaka, Hirata, and Tojo (Hamanaka,
Hirata, and Tojo 2007).

Figure 2: A depiction of the process for converting a tree that
uses a note representation to a tree that uses an interval rep-
resentation, by traversing the tree breadth-wise and relating
sets of 3 notes.

the node label as the left-hand side, and the children as the
right-hand side. Collect the set of rules found at every branch
of every tree in the treebank, and pass that list of produc-
tion rule instances into NLTK’s induce_pcfg function. The
induce _pcfg function will catalogue every rule, and build up
a grammar based on those rules. It will also model the prob-
ability of each rule’s unique expansions.

The Experiment

Given a method for creating a treebank with any interval-
based data representation from the GTTM dataset and induc-
ing the corresponding PCFG, an experiment was designed
to test the efficacy of different data representations when ap-
plied to the process of melodic reduction. This section de-
tails the experiment that was performed. First, different rep-
resentations that were tested are presented. Then, the com-
parison and evaluation method are described. After that, the
results of cross-fold evaluation for the PCFG created with
each different data representation are shown. Finally, some
experimental work for modelling harmony with grammar is
presented.

Data Representations

For the representation of intervals between two consecutive
notes, this research focused on a few certain musical at-
tributes. These attributes were tested first in isolation, and
then in combination. The following descriptions relate to
the attributes labelled in the results table (the key for each

attribute is given in parentheses following the name).

Pitch The difference in pitch between two notes was a
part of every data representation tested. However, the encod-
ings for these pitch values varied. Initially, a simple pitch
class representation was used. This allowed pitch intervals
at different points in the musical scale to be grouped into the
same production rules. It was assumed that direction of pitch
would also be an important factor, so the pitch class (PC)
attribute allowed the following range of intervals: [-11, 11].
Melodic embellishment rules often apply to the same move-
ments of intervals within a musical scale. For this reason,
the Key-Relative pitch class (KPC) was also used, which
allowed a range of intervals from [-7, 7], measuring the dis-
tance in diatonic steps between two consecutive notes.

Metrical Onset For encoding the metrical relationships
between two notes, the metric delta representation was bor-
rowed from previous research (Gilbert and Conklin 2007).
This metric delta assigns every onset to a level in a metrical
hierarchy. The metrical hierarchy is composed of levels of
descending importance, based on their onset location within
a metrical grid. The onsets were assigned a level based on
their closest onset location in the metrical hierarchy.

Because the GTTM dataset contains either 100 or 300
solutions (for prolongational reduction trees and time-span
trees, respectively), the data representations had to be de-
signed to limit the number of unique production rules cre-
ated in the PCFG. With too many production rules, there
is an increased chance of production rules that have a zero
probability, which results in the failure to parse certain test
melodies. Therefore, two separate metrical onset attributes
were created. One which represented the full metrical hier-
archy, named Metric Delta Full (Met1), and one which rep-
resented only the directional change in metric level, named
Metric Delta Reduced (Met0).

Harmonic Relationship This research was also de-
signed to test whether or not the information of a note’s
relationship to the underlying harmony was useful in the
melodic reduction process. A Chord Tone Change (CT)
attribute was therefore created, which labelled whether or
not each note in the interval was a chord tone. This created
four possibilities: a chord tone followed by a chord tone, a
chord tone followed by a non-chord tone, a non-chord tone
followed by a chord tone and a non-chord tone followed by a
non-chord tone. This rule was designed to test whether har-
monic relationships affected the reduction process.

Comparison

The comparison method chosen was identical to the meth-
ods used in other experiments of the same type, in which
the output of the system is a tree structure, and the tree
solutions are available (Hamanaka, Hirata, and Tojo 2007;
?). First, for a given test, the input melody is parsed, which
yields the most probable parse tree as an output. The output
trees are then compared with the solution trees. To do so,
the tree is simply traversed, and each node from the output



tree is compared for equivalence to the corresponding node
in the solution tree. This method is somewhat strict, in that
mistakes towards the bottom of the tree will be propagated
upwards, so incorrect rule applications will be counted as
incorrect in multiple places.

Evaluation

Cross-fold evaluation was used to perform the evaluation.
The entire treebank of solutions were first partitioned into
5 subsets, and 1 subset was used for the test set in 5 iter-
ations of the training and comparison process. The results
were then averaged. In order to keep consistency across data
representations, the same test and training sets were used for
each cross-validation process.

Results

Each data representation that was selected was performed
on both the set of time-span reduction trees and the set
of prolongational reduction trees, when possible. As men-
tioned previously, the set of prolongational reduction trees
amounted to only 100 samples, while the time-span trees
amounted to 300. In some situations, the data representa-
tion would create too many unique production rules, and not
all the test melodies could be parsed. All of the data repre-
sentations in the results table had at least a 90% coverage
of the test melodies, meaning that at least 90% of the tests
could be parsed and compared. There are also two data rep-
resentations that use time-span trees with the harmonic rep-
resentation. For these tests, the solution set contained only
100 samples as opposed to the usual 300 for time-span trees,
since there is only harmonic information for 100 of the 300
melodies.

Tree- % nodes
type | PC | KPC | Metl | MetO | CT | correct
TS X 35.33
PR X 38.57
TS X X | 40.40
PR X X | 3850
TS X X 44.12
PR X X 46.55
TS X X X | 44.80
PR X X X | 46.74

Table 1: The effectiveness of each of the PCFG models, with
the details of their corresponding data representation

These results mostly progress as one might expect. Look-
ing at only the tests done with time-span trees, the results
improve initially when using the Key-Relative pitch class
encoding for pitch intervals paired with the Chord Tone
Change feature; it received a 5% increase as compared with
the PCFG that only used the pitch class feature (which
could be considered a baseline). It gained an even bigger
increase when using the Metric Delta Full feature, an al-
most 9% increase in efficacy compared with the pitch class
test. Combining metric and chord features with the Key-
Relative pitch class encoding did not provide much further
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Figure 3: A set of melodies that show the progressive reduc-
tions, using the data representation that includes key-relative
pitch class, metric delta and chord tone features.

gain that with the metric feature alone. The prolongational
reduction also improved when given the metric delta infor-
mation, however the harmonic relationship feature affected
the outcome very little.

The best performing PCFG was induced from the prolon-
gational reduction trees, and used a data representation that
included the Key-Relative pitch class encoding combined
with both the simplified metric delta and the chord tone in-
formation.

A specific reduction example helps to illustrate both the
effectiveness and the drawbacks of using the induced PCFG
for melodic reduction. Figure 3 displays the iterative reduc-
tions applied by pruning a PCFG tree, level by level. The
grammar used to create this reduction was trained on pro-
longational reduction trees, and included the Key-Relative
pitch class intervals, with notations for the Metric Delta
Reduced feature, and the Chord Tone Change feature. This
PCFG was the best performing, according to the evaluation
metric. From a musicological perspective, the PCFG ini-
tially makes relatively sound decisions when reducing notes
from the music surface. It is only when it begins to make
decision at the deeper levels of reduction that it begins to
choose the incorrect notes as the more important tones.

Melodic Generation

With a trained PCFG, one can sample from the probabilistic
distributions in order to iteratively build a new tree struc-
ture representing a melody. With this process, each rule’s set
of right-hand side expansions are randomly sampled, start-
ing with the Start rule. Depending on the data representation
used, the resulting tree will contain the information for each
transition between pitches, as well as each metric interval.
Some example generated melodies are provided in Figure 5.

Generated Examples

The best-performing PCFG was the one trained on the pro-
longational reductions, and the data representation included
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Figure 4: A generated tree with its corresponding melody.
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Figure 5: Some example generated melodies.

key-relative pitch classes, simple metric intervals, and chord
tone information. In order to use the chord tone informa-
tion, one would need to create a model for the harmonic se-
quences, and how they relate to the melodies—it would not be
useful to simply assign a chord to each chord tone without
some sense of harmonic progression as well as insight into
which chord is appropriate for the given pitch. Similarly, us-
ing the Metric Delta Reduced representation for the onsets
of the generated notes limits the rhythmic possibilities, be-
cause the onsets can only occur either at the same metric
level, one metric level greater or one metric level smaller
than the previous note. Using the Metric Delta Full data
representation would therefore be advantageous because the
onset possibilities are a lot more diverse. Because of these
limitations, the melodies were generated from a PCFG that

performed similarly well, but also had the advantage of us-
ing the Metric Delta Full encoding for onsets, the Key-
Relative Pitch Class for pitches, and included no chord tone
information. This representation had a 44.12% accuracy in
forming melodic reduction trees (see Table 1).

Since the representation is formed with intervals, each
leaf node of the tree is therefore relative to the previous note.
Due to this representation choice, the first note of every gen-
erated melody must be assigned before the rest of the notes
can be generated. For the sake of simplicity, each melody
was generated in the key of C Major, with the tonic as the
first note. Similarly, a quarter tone value was considered the
first metric level, and each onset thereafter was generated
based on the next possible onset in time that fell in that met-
ric level.

An example melody is shown in Figure 4b. The tree struc-
ture that was used to generate this melody, which also repre-
sents the melody’s reduction, is shown in Figure 4a. It is im-
portant to understand the format of the data representation.
Each node is represented by the combination of the encoded
features, each separated by a dot. A label of ‘1.2°, for ex-
ample, specifies that the key-relative pitch class is a positive
interval of 1 from the previous node, and the metric interval
is a positive interval of 2. The internal nodes have the same
label format as the leaf nodes. Furthermore, each of the fea-
tures in the child nodes should add up to the corresponding
feature in the given parent node.

The first four notes of the melody are a good example of
how the embellishment rules can manifest. At the top of this
sub-tree is the node label ‘0.0’. This means that the pitch
should repeat at the same onset interval. After embellish-
ment, it can be seen that this label represents the interval
between note 1 and note 4 in the melody, both at the metric
level of a 1/16th note (this melody was generated with the



initial note starting on the tonic, at the 1/16th note metric
level). The Repeat Rule is then embellished with two child
nodes that together compose a Neighbor Tone Rule. The first
rising step of the Neighbor Tone Rule is then further embel-
lished by an Escape Tone Rule, completing the 4-note figure.
This type of figure is common, and can be formed using al-
ternative embellishment rules. For example, it could also be
formed with a jump of 2 diatonic steps, followed by a de-
scending Passing Tone Rule. What this particular formation
in the example could indicate is that the Neighbor Tone (the
third note in the figure) is more structurally important than
the initial jump (the second note).

Future Work: Harmonic Grammar

The lack of the ability to generate notes that relate to an un-
derlying harmony is a serious drawback of the model. The
amount of ground truth data that was available in the GTTM
dataset limited the complexity of the data representations
such that it was only possible to encode a simple boolean
feature that specified whether or not a note was part of the
underlying harmony.

As a first step towards bridging the gap between the cur-
rent model and a proper harmonic representation, the author
created an isolated grammar to represent triadic sequences in
melodies. The motivation for this was to create a grammar
which could identify a single underlying triad for a given
note sequence, with hopes to extend the grammar to model
sequences of triads and their corresponding transitions.

A triad has three possible notes, and can span any oc-
tave. Since every rule must represent relative pitch distance,
it would be possible to compute the relative pitch between
every note combination of the three notes. To begin, a rule
is created that represents the transition from the root note to
the third of the the triad, followed by the transition from the
third to the fifth of the triad, in pitch classes:

ROOT — 34

This rule completes the triad, by visiting each note in the
triad, starting from whatever note was first played. This by
no means covers all the possible triads. Therefore, an ab-
straction is made to represent moving to the third of the triad.
Then a rule is created for the third of the triad moving to the
fifth, which will complete the triad:

ROOT — 3 THIRD
THIRD — 4

This abstraction is extended to label situations in which two
of the triadic notes have already been visited as well in or-
der to create a full arpeggiation grammar. The following is a
grammar that allows repetition of notes, while ensuring that
every note in the triad is visited for every possible combina-
tion of rules:

S — ROOT | THIRD | FIFTH

ROOT — 3 ROOT_THIRD | 7 ROOT_FIFTH
THIRD — 4 THIRD_FIFTH | 9 THIRD_ROOT
FIFTH — 5 FIFTH_ROOT | 8 FIFTH_THIRD
ROOT_THIRD — 4 | 4 FIFTHX | 9 THIRD_ROOT
ROOT_FIFTH — 8 | 8 THIRDX | 5 FIFTH_ROOT
THIRD_FIFTH — 5 | 5 ROOTX | 8 FIFTH_THIRD

THIRD_ROOT — 7 | 7 FIFTHX | 3 ROOT_THIRD
FIFTH_ROOT — 3 | 3 THIRDX | 7 ROOT_FIFTH
FIFTH_THIRD — 9 | 9 ROOTX | 4 THIRD_FIFTH
ROOTX — 3|7 | 3 THIRDX | 7 FIFTHX
THIRDX — 4 | 9 | 4 FIFTHX | 9 ROOTX

FIFTHX — 5 | 8 | 5 ROOTX | 8 THIRDX

This final grammar generates every possible interval combi-
nation for ascending arpeggios of a minor triad. The NLTK
package provides a module for randomly generating sen-
tences of the language defined by a CFG. This module was
used to generate the following example sequences in Table
2 from the triadic grammar just described. The file that con-
tains the CFG sampling code is generate_arpeggio.py.

If a melody remains in a single harmonic context (without
transitioning to a new underlying chord) it would be possible
to extend the arpeggiating grammar above with the rules of
embellishment.

Conclusion

This research has performed the induction of a PCFG from
a treebank of solutions for the process of melodic reduction.
It was shown that, for the most part, adding metric or har-
monic information in the data representation improves the
efficacy of the resulting probabilistic model, when analyz-
ing the results for the model’s ability to reduce melodies in
a musically sound way. The source code for this work also
allows any researcher to create their own interval representa-
tions, and convert the GTTM dataset into a PCFG treebank.

Furthermore, examples of the application of the resulting
model for the generation of melodies was also shown. While
the compositional value of the melodies is not strong, the
combination of the basic building blocks of composition al-
lows it to generate familiar figures.

The lack of harmonic representation is certainly a limita-
tion. If there were a way to identify which chord the note
belonged to, it would likely help with the grouping of larger
phrases in the reduction hierarchy. Furthermore, there is no
way to explicitly identify repetition in the melodies with this
model. That, too, might be able to assist the model, because
if it can identify similar phrases, it could potentially iden-
tify the structural notes on which those phrases rely. Each of
these improvements would also likely improve the quality of
the generated melodies.

The source code for this research is available to the public,
and can be found on the author’s github account?.

Zhttps://github.com/bigpianist/SupervisedPCFG_MelodicReduction



ROOT THIRD FIFTH
D. | Intervals  Notes Intervals  Notes Intervals  Notes
4 [3, 4] C,Eb, G [4, 5] Eb, G, C [5, 3] G, C,Eb
5 [3, 4, 5] C,Eb, G, C [4, 5, 3] Eb, G, C [5, 3, 4] G,C,Eb, G
5 [3, 4, 8] C, Eb, G, Eb [4,5,7] Eb, G, C [5,3,9] G,C,Eb, C
5 [3,9,7] C,Eb,C,G [4, 8, 9] Eb, G, E [5,7, 8] G,C,G,Eb
4 [7, 8] C,G, Eb [9, 7] Eb, C, G [8, 9] G, Eb, C
5 [7, 8, 4] C,G,Eb,G [9,7, 5] Eb,C, G [8,9, 3] G, Eb, C, Eb
5 [7, 8, 9] C,G,Eb, C [9,7, 8] Eb,C, G [8,9,7] G,Eb,C, G
5 [7,5, 3] C,G,C,Eb [9, 3, 4] Eb, C, E [8, 4, 5] G,Eb, G, C
10 | [7,8,9,7,5,3,9,7] [9,3,9,7,8,4,8,9] [8,4,8,4,5,3,4,8]
C,G,Eb,C,G,C,Eb,C,G Eb, C, Eb, C, G, Eb, G, Eb, C | G, Eb, G, Eb, G, C, Eb, G, Eb

Table 2: Ascending arpeggios generated from the CFG for a minor triad. The “D.” column stands for grammar tree “Depth”,
and is proportional to the number of intervals contained in each grammar string. The grammar was run with the three different
starting rules of ROOT, THIRD, and FIFTH. The intervals were then converted to individual notes starting from the root, third,
and fifth of the C minor triad, respectively. All trees of depth five or less are included, as well as one randomly-selected grammar

string of depth ten.

References

Abdallah, S. A., and Gold, N. E. 2014. Comparing models
of symbolic music using probabilistic grammars and prob-
abilistic programming. In Proceedings of the International
Computer Music Conference, 1524-31.

Abdallah, S. A.; Gold, N. E.; and Marsden, A. 2016.
Analysing symbolic music with probabilistic grammars. In
Meredith, D., ed., Computational Music Analysis. Cham,
Switzerland: Springer International. 157-89.

Backus, J. W. 1959. The syntax and semantics of the pro-
posed international algebraic language of the Zurich ACM-
GAMM conference. In Proceedings of the International
Conference for Information Processing, 125-31.

Baroni, M., and Jacobini, C. 1975. Analysis and generation
of Bach’s chorale melodies. In Proceedings of the Interna-
tional Congress on the Semiotics of Music, 125-34.

Baroni, M., and Jacoboni, C. 1978. Proposal for a gram-
mar of melody: The Bach Chorales. Montreal, Canada: Les
Presses de 1’ Université de Montréal.

Baroni, M.; Brunetti, R.; Callegari, L.; and Jacoboni, C.
1982. A grammar for melody: Relationships between
melody and harmony. In Baroni, M., and Callegari, L., eds.,
Musical Grammars and Computer Analysis, 201-18.

Beach, D. 1969. A Schenker bibliography. Journal of Music
Theory 13(1):2-37.
Chomsky, N. 1956. Three models for the description of

language. Institute of Radio Engineers Transactions on In-
formation Theory 2:113-24.

Chomsky, N. 1959. On certain formal properties of gram-
mars. Information and Control 2(2):137-67.

Gilbert, E., and Conklin, D. 2007. A probabilistic context-
free grammar for melodic reduction. In Proceedings for the
International Workshop on Artificial Intelligence and Mu-
sic, International Joint Conference on Artificial Intelligence,
83-94.

Hamanaka, M.; Hirata, K.; and Tojo, S. 2007. Implementing

“A generative theory of tonal music”. Journal of New Music
Research 35(4):249-717.

Hamanaka, M.; Hirata, K.; and Tojo, S. 2015. ¢GTTM III:
Learning based time-span tree generator based on PCFG. In
Proceedings of the Symposium on Computer Music Multi-
disciplinary Research.

Jurafsky, D., and Martin, J. H. 2000. Speech and language
processing: An introduction to natural language processing,
computational linguistics, and speech recognition. Upper
Saddle River, NJ: Prentice Hall, 1st edition.

Kirlin, P. B. 2014. A probabilistic model of hierarchical

music analysis. Ph.D. thesis, University of Massachusetts
Ambherst, Amherst, MA.

Lerdahl, F., and Jackendoff, R. 1983. A generative theory of
tonal music. Cambridge, MA: The MIT Press.

Loper, E., and Bird, S. 2002. NLTK: The natural language
toolkit. In Proceedings of the Workshop on Effective Tools
and Methodologies for Teaching Natural Language Process-
ing and Computational Linguistics, volume 1, 63-70.

Marsden, A. 2010. Recognition of variations using auto-
matic Schenkerian reduction. In Proceedings of the Interna-
tional Conference on Music Information Retrieval, 501-6.
Roads, C., and Wieneke, P. 1979. Grammars as representa-
tions for music. Computer Music Journal 3(1):48-55.
Ruwet, N. 1975. Theorie et methodes dans les etudes musi-
cales. Musique en Jeu 17:11-36.

Smoliar, S. W. 1976. Music programs: An approach to music

theory through computational linguistics. Journal of Music
Theory 20(1):105-31.



