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Abstract 

This paper presents NetWorks (NW), an interactive music-
generation system that uses a hierarchically clustered scale-
free network to generate music that ranges from orderly to 
chaotic. NW was inspired by the Honing Theory of creativi-
ty, according to which human-like creativity hinges on (1) 
the ability to self-organize and maintain dynamics at the 
‘edge of chaos’ using something akin to ‘psychological en-
tropy’, and (2) the capacity to shift between analytic and as-
sociative processing modes. At the ‘edge of chaos’ NW 
generates patterns that exhibit emergent complexity through 
coherent development at low, mid, and high levels of musi-
cal organization, and often suggests goal seeking behavior. 
The architecture consists of four 16-node modules: one each 
for pitch, velocity, duration, and entry delay. The Core al-
lows users to define how nodes are connected, and rules that 
determine when and how nodes respond to their inputs. The 
Mapping Layer allows users to map node output values to 
MIDI data that is routed to software instruments in a digital 
audio workstation. By shifting between bottom-up and top-
down NW shifts between analytic and associative pro-
cessing modes. 

Introduction  
This paper introduces NetWorks (NW), a music-generating 
program inspired by the view that (1) the human mind is a 
complex adaptive system (CAS), and thus (2) human-like 
computational creativity can be achieved by drawing on 
the science of complex systems. NW uses scale-free net-
works and ‘edge of chaos’ dynamics to generate music that 
is aesthetically pleasing and maintains interest. The ap-
proach dates back to a CD of emergent, self–organizing 
computer music based on cellular automata and asynchro-
nous genetic networks titled “Voices From The Edge of 
Chaos” (Bell 1998), and more generally to the application 
of artificial life models to computer-assisted composition, 
generative music, and sound synthesis (Beyls 1989, 1990, 
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1991; Bowcott 1989; Chareyron 1990; Horner and Gold-
berg 1991; Horowitz 1994; Millen 1992; Miranda 1995; 
Todd and Loy 1991). 

 We first summarize key elements of a CAS-inspired 
theory of creativity, and discuss the relevance for computa-
tional creativity. Next we outline the architecture of NW, 
evaluate its outputs, and highlight some of its achieve-
ments. We then summarize how NW adheres to principles 
of honing theory and CAS, and how this contributes to the 
appealing musicality of its output. 

The Honing Theory of Creativity 
The honing theory (HT) of creativity (Gabora 2010, in 
press) has its roots in the question of what kind of structure 
could evolve novel, creative forms effectively and strategi-
cally (as opposed to at random). We now summarize the 
elements of the theory most relevant to NetWorks. 

Mind as a Self-Organizing Structure 
Humans possess two levels of complex, adaptive, struc-
ture: an organismic level and a psychological level, i.e., a 
mind (Pribram 1994). Like a body, a mind is self-
organizing: a new stable global organization can emerge 
through interactions amongst the parts (Ashby 1947; 
Carver and Scheier 2002; Prigogine and Nicolis 1977). The 
capacity to self-organize into a new patterned structure of 
relationships is critical for the generation of creative out-
comes (Abraham 1996; Goertzel 1997; Guastello 1998). 
The mind’s self-organizing capacity originates in a 
memory that is distributed, content addressable, and suffi-
ciently densely packed that for any one item there is a rea-
sonable probability it is similar enough to some other item 
to evoke a reminding of it, thereby enabling the redescri-
tion and refinement of ideas and actions in a stream of 
thought (Gabora, 2000, 2010). Mental representations are 
distributed across neural cell assemblies that encode for 
primitive stimulus features such as particular tones or tim-
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bres. Mental representations are both constrained and ena-
bled by the connections between neurons they activate. 

Just as a body mends itself when injured, a mind is on 
the lookout for ‘gaps’—arenas of incompletion or incon-
sistency or pent-up emotion—and explores the gap from 
different perspectives until a new understanding has been 
achieved. We use the term self-mending to refer to the ca-
pacity to reduce psychological entropy in response to a 
perturbation (Gabora, in press), i.e., it is a form of self-
organization involving reprocessing of arousal-provoking 
material. Creative thinking induces restructuring of repre-
sentations, which may involve re-encoding the task such 
that new elements are perceived to be relevant, or relaxing 
goal constraints. The transformative impact of immersion 
in a creative process can bring about sweeping changes to 
the second (psychological) level of complex, adaptive 
structure, that alter one’s self-concept and worldview. 

The Edge of Chaos 
 Self-organized criticality (SOC) is a phenomenon wherein, 
through simple local interactions, complex systems find a 
critical state poised at the transition between order and 
chaos—the proverbial edge of chaos—from which a small 
perturbation can exert a disproportionately large effect 
(Bak, Tang, and Weisenfeld 1988). It has been suggested 
that insight is a self-organized critical event (Gabora 1998; 
Schilling 2005). SOC gives rise to structure that exhibits 
sparse connectivity, short average path lengths, strong lo-
cal clustering, long-range correlations in space and time, 
and rapid reconfiguration in response to external inputs. 
There is evidence of SOC in the human brain, e.g., with 
respect to phase synchronization of large-scale functional 
networks (Kitbiczler, Smith, Christensen, and Bullmore 
2009). There is also evidence of SOC at the cognitive lev-
el; word association studies show that concepts are clus-
tered and sparsely connected, with some having many as-
sociates and others few (Nelson, McEvoy, and Schreiber 
2004). Cognitive networks exhibit the sparse connectivity, 
short average path lengths, and local clustering characteris-
tic of self-organized complexity and in particular ‘small 
world’ structure (Steyvers and Tenenbaum 2005). 

Like other SOC systems, a creative mind may function 
within a regime midway between order (systematic pro-
gression of thoughts), and chaos (everything reminds one 
of everything else). Much as most perturbations in SOC 
systems have little effect but the occasional perturbation 
has a dramatic effect, most thoughts have little effect on 
one’s worldview, but occasionally one thought triggers 
another, which triggers another, and so forth in a chain 
reaction of conceptual change. This is consistent with find-
ings that large-scale creative conceptual change often fol-
lows a series of small conceptual changes (Ward, Smith, 
and Vaid 1997), and with evidence that power laws and 

catastrophe models are applicable to the diffusion of inno-
vations (Jacobsen and Guastello 2011). 

Two Modes of Thought: Contextual Focus 
Psychological theories of creativity typically involve a 
divergent stage that predominates during idea generation 
and a convergent stage that predominates during the re-
finement, implementation, and testing of an idea (for a 
review see Runco 2010; for comparison between divergent 
/ convergent creative processes and dual process models of 
cognition see Sowden, Pringle, and Gabora 2015). Diver-
gent thought is characterized as intuitive and reflective; it 
involves the generation of multiple discrete, often uncon-
ventional possibilities. It is contrasted with convergent 
thought, which is critical and evaluative; it involves tweak-
ing of the most promising possibilities. There is empirical 
evidence for oscillations in convergent and divergent 
thinking, with a relationship between divergent thinking 
and chaos (Guastello 1998). It is widely believed that di-
vergent thought involves defocused attention and associa-
tive processing, and this is consistent with the literal mean-
ing of divergent as “spreading out” (as in a divergence of a 
beam of light). However, the term divergent thinking has 
come to refer to the kind of thought that occurs during cre-
ative tasks that involve the generation of multiple solu-
tions, which may or may not involve defocused attention 
and associative memory. Moreover, in divergent thought, 
the associative horizons simply widen generically instead 
of in a way that is tailored to the situation or context (Fig. 
2). Therefore, we will use the term associative thought to 
refer to creative thinking that involves defocused attention 
and context-sensitive associative processes, and analytic 
thought to refer to creative thinking that involves focused 
attention and executive processes. The capacity to shift 
between these modes of thought has been referred to as 
contextual focus (CF) (Gabora 2010). While some dual 
processing theories (e.g., Evans 2003) make the split be-
tween automatic and deliberate processes, CF makes the 
split between an associative mode conducive to detecting 
relationships of correlation and an analytic mode condu-
cive to detecting relationships of causation. Defocusing 
attention facilitates associative thought by diffusely acti-
vating a broad region of memory, enabling obscure 
(though potentially relevant) aspects of a situation to come 
to mind. Focusing attention facilitates analytic thought by 
constraining activation such that items are considered in a 
compact form amenable to complex mental operations. 

According to HT, because of the architecture of associa-
tive memory, creativity involves not searching and select-
ing amongst well-formed idea candidates, but amalgamat-
ing and honing initially ill-formed possibilities from multi-
ple sources. As a creative idea is honed, its representation 
changes through interaction with internally or externally 



generated contexts, until psychological entropy is accepta-
bly low. The unborn idea is said to be in a ‘state of potenti-
ality’ because it could actualize different ways depending 
on the contextual cues taken into account as it takes shape. 

The NetWorks Musical System 
NW consists of a music-generating system and the music it 
has produced. The goals of NW are to (1) generate “emer-
gent music,” i.e., self-organizing, emergent dynamics from 
simple rules of interaction, expressed in musical forms, and 
(2) through emergence, discover new genres of music. In 
terms of creative agency, NW has been designed as a 
closed, autonomous system while generating MIDI data. In 
selecting the network architecture and interaction rules, the 
artist-user may be viewed as the system’s mentor. The 
MIDI data generated by the system is orchestrated and 
mixed by the artist-user, who may be viewed in this role as 
a collaborator (McCormack and d’Inverno 2014). 

Network theory, as it pertains to the study of complex 
adaptive systems (Mitchell 2006) was used in the design of 
the NW system. NW is currently configured to explore the 
expressive potential of hierarchical scale-free networks, as 
the properties of such networks underlies the interesting 
dynamics of many real world networks, from the cell to the 
World Wide Web (Barabási 2002). Moreover, musical 
genres that appear to be very different on the surface have 
been shown to exhibit an underlying scale-free structure. 
Music composed by Bach, Chopin and Mozart, as well as 
Russian folk and Chinese pop music have been shown to 
be scale-free (Liu, Tse & Small 2009). Given the ubiquity 
of hierarchical scale-free topology and dynamics found in 
CAS it is not surprising that such architectures have crea-
tive potential.  

NW is composed of two layers (1) the Core, which al-
lows the artist-user to define how the nodes are connected, 
as well as the rules that determine when and how nodes 
respond to their inputs, and (2) the Mapping Layer, which 
allows the artist-user to map node output values to MIDI 
data that are routed to software instruments in a Digital 
Audio Workstation (DAW). 

We now discuss these two layers in more detail. 

The Core 
A note has five basic attributes: pitch, loudness (usually 
corresponding to MIDI velocity), duration, timing (or entry 
delay), and timbre. The core consists of 64 nodes connect-
ed in a scale-free architecture, organized into four 16-node 

modules: one for pitch, velocity, duration, and entry delay 
(Figure 1).  

Pitch nodes output values for pitch, but require values 
for velocity and duration to produce a note. The nodes of 
the velocity and duration modules provide these values. 
Four, sixteen node modules allow for 16 channels of MIDI 
output and the timbral characteristics for each stream of 
notes is determined by the artist-user by their choice of 
instruments. 
 The entry delay (ED) module is responsible for keeping 
the corresponding nodes of the four modules synchronized 
(Figure 1). When a pitch node is activated, as determined 
by the delay value it receives from its ED module node, the 
corresponding velocity and duration module nodes are ac-
tivated simultaneously to provide the values required to 
specify a note. The function of the ED module is to deter-
mine timing, that is, when nodes produce an output, and 
therefore the pattern of activation across the network as a 
whole. In musical terms, the entry delay module generates 
rhythmic patterns via note groupings, from motivic cells to 
entire movements. 

When the nodes are fully connected—that is, receiving 
values on all their inputs—the network architecture is 
scale-free; however users can prune the connectivity of the 
network by reducing the number of inputs to the nodes. 
Nodes 
The values that nodes send and receive are integers, within 
a range specified by the artist-user, for example 1–13, 1-
25, etc. Nodes function according to the following algo-
rithm: 

1. nodes store the most recently received values from 
connected nodes; 

2. when a node is activated the values are summed;  
3. the sum is sent to a look-up table which outputs a 

value; 
4. the value is delayed, as determined by the corre-

sponding node in the ED module;  
5. the value is then sent to connected nodes, as well 

as back to the originating node. 
The pitch module is unique; it includes the largest hub, 

which sends values to, and receives values from, 40 nodes: 
12 pitch nodes, 9 nodes each from the duration, velocity, 
and ED modules, as well as from itself.  

It is important to emphasize that hubs receive values 
from, and send values to, hubs in other modules. In this 
way, note attributes affect one another as the music evolves 
over time, for example: duration can influence pitch, pitch 
can influence entry delay, entry delay can influence veloci-
ty, and so on.  



Rules 
When activated, a node sums the last values it received and 
sends the sum to a look-up table (LUT) that returns the 
value stored at the corresponding index. Experiments have 
focused on the range of integers from 1–25 that allows for 
pitch to be mapped chromatically across two octaves and 
provides the same number of equivalent scale steps for 
velocity, duration and entry delay.  

NetWorks has been designed to allow (1) each node to 
have its own LUT, (2) an LUT for each module, and (3) 
one LUT for all the nodes of the network. LUTs are gener-
ated using a variety of methods: random, random without 
repetition, ratios, etc. 

The dynamics of the network are controlled by the 
choice of LUTs. Networks with nodes using LUTs with a 
random distribution of output values result in chaotic MIDI 
data sequences. Networks with nodes using LUTs that out-
put the same value produce total repetition.  
Relationship between Architecture and Rules 
Two observations can be made regarding the relationship 
of rules and network architecture. First, when the network 
is scale-free, nodes have either 4, 5, 6, 15 or 40 inputs. 
Each input on a node can receive a range of values that are 
summed to determine an output value (via the LUT). This 
means the range of output values is always less than the 
range of possible summed values, which results in a loss of 
“information.” For example, the largest hub with 40 inputs 
requires an LUT with an index of 520, but can only output 
13 different values. Hence, nodes can be thought of as 

“funnels,” in that the range of integers they can output is 
always less than the range of possible sums of their inputs. 

Second, while hubs have a wider “sphere of influence” 
because their output is sent to a greater number of nodes, 
hubs also receive input from the same nodes, which co-
determine their outputs. Consequently, information flows 
both from the bottom-up and from the top-down through 
the network. However, the more connected the hub, the 
more inputs it sums, and the less able it is to respond with 
unique outputs. While less well-connected nodes have a 
smaller “sphere of influence,” their ability to distinguish 
between their inputs with unique outputs is significantly 
greater. Put another way, information flowing from the 
top-down is more “general” than information flowing from 
the bottom-up.  

MIDI Mapping 
The MIDI Mapping layer allows users to map node output 
values to appropriate MIDI ranges. For example, if nodes 
are set to output 12 values: 

1. output values from pitch nodes can be mapped to a 
chromatic scale (e.g. C4–C5);  

2. velocity node outputs can be mapped to 10, 20, 30, 
40 … 120 MIDI velocity values;  

3. duration node outputs can be mapped to an arbitrari-
ly chosen fixed range (e.g., 100, 150, 200 … 650 
milliseconds) or a duration based on a subdivision 
of the entry delay times between notes. 

4. entry delays values between notes are scaled to an 
appropriate musical range in milliseconds.  

Figure 1. Schematic illustration of the different kinds of nodes and their interrelationships. Undirected edges (in black) indicate that 
values can be exchanged in both directions, i.e.,nodes both send values to, and receive values from, nodes to which they are connected. 
Directed edges (purple) show the relationship between individual nodes of the Entry Delay module and the corresponding nodes of 
other modules. The ED module node determines when it will activate itself, and the corresponding node in the duration, velocity, and 
pitch modules. For clarity, only one of the 16 ED nodes and its four corresponding nodes are shown. 



In addition to generating the basic attributes of notes, 
NetWorks provides for mapping network activity to MIDI 
cc control data to control various synthesis parameters such 
as filters, and so forth, chosen the user. Currently, howev-
er, these outputs do not feedback into the network. 

Since NW MIDI data is computer-generated, sampled 
acoustic instruments are often used to give the music a 
“human feel” and help the listener compare the self-
organizing output patterns to known genres. When map-
ping patterns to sound, and during mixing, the main goal is 
to preserve the integrity of the generated patterns by ensur-
ing that the changing relationships between note attributes 
remain audible. Instruments with complex envelopes and 
textures, and effects (such as echo), were avoided. 

Evaluation of NetWorks Output 
To date, two albums have been produced using the Net-
Works system: “NetWorks 1: Could-be Music” and “Net-
works 2: Phase Portraits”, which can be heard online: 

• https://shawnbell.bandcamp.com/album/networks-
1-could-be-music 

• https://shawnbell.bandcamp.com/album/networks-
2-phase-portraits 

The most recent experiments can be found here: 
• https://soundcloud.com/zomes 

 As mentioned, NW output dynamics range from com-
plete order (and thus repetition without change) to com-
plete chaos (and thus no element of predictability). The 
musicality of the output is greatest when the system is 
tuned to an intermediate between these extremes, i.e., the 
proverbial ‘edge of chaos.’ At this point there is a pleasing 
balance between familiar, repeating patterns, and novelty.  

Shannon Entropy was also used to compare NW MIDI 
data sequences generated with rules having a random dis-
tribution of output values with MIDI data generated using 
LUTs that output (mostly) the same value when activated. 
Entropy was also used to compare NW pieces, tuned to the 
edge of chaos, to other genres of music to confirm subjec-
tive comparisons.  

Entropy is a good measure of the unpredictability / com-
plexity in data sequences. As a simplified data sequence, 
music has two features: the range of notes (pitch/duration 
pairs), and the repetitiveness of the notes. Entropy values 
capture the degree of variety and repetitiveness of note 
sequences in MIDI data. Roughly speaking, high entropy 
indicates surprising or unpredictable musical patterns while 
low entropy indicates predictable, repeating musical pat-
terns (Ren 2015). In this analysis, the entropy of a piece 
was calculated by counting the frequency of musical 
events, specifically the appearances of each note (pitch-
duration pair), as well as pitch and duration separately to 
get the discrete distribution of those events. Equation 1 was 

used to calculate the information content of each note. The 
expectation value of the information content, defined as 
−logp(xi), was used to obtain the entropy. The entropy is 
related to the frequency of musical events in a specific 
range. Differences in entropy values stem from differences 
of (1) the underlying possibility space size, i.e. how many 
different types of musical events there are, and (2) how 
repetitive they are. Although this does not take into ac-
count the order of events it provides a general characteriza-
tion useful for comparing musical sequences (Ren 2015). 

 

 
 

In Figure 2, the entropy value of ten NW pieces (x-
tick=3) is compared with Bach's chorales (x-tick=1) and 
with jazz tunes (x-tick=2). In terms of entropy, NW pieces 
are closer to jazz than to Bach, which confirms informal 
subjective evaluations of NW music. X-tick=4 shows the 
entropy value for three NW pieces generated using a ran-
dom distribution of LUT output values and x-tick=5 shows 
the entropy values of three NWs pieces with near uniform 
LUTs. These values verify the relationship between NW 
MIDI outputs and the LUTs that generate them. 

 

 
Figure 2. Comparison of entropy of ten NW pieces (x-tick=3) 

with Bach chorales (x-tick=1) and jazz tunes (x-tick=2). 

Evaluation of NW music via social media 
(SoundCloud), shows an increasing interest in NW music 
from what is quite likely a diverse audience given the wide 
range of social-media groups to which NW music has been 
posted (e.g., classical, jazz, electronic, experimental, ambi-
ent, film music, algorithmic music, creative coding, com-
plex systems, etc.). There has been a steady growth of “fol-
lowers” over the two years (2014-2016) of posting NW 
pieces (28 tracks). As of the writing of this paper, NW has 
323 followers. 7,893 listens, 831 downloads, 363 likes, 24 
reposts, and 55 comments (all of which are positive). 

As a search for “music-as-it-could-be,” (e.g., new gen-
res) a comment from SoundCloud indicates this goal may 



have been attained: “What can I say except I think I like 
it?” This suggests that the person has heard something they 
cannot categorize, but that sounds like good music. 

How NetWorks Implements Honing Theory 
We now summarize how the NetWorks (NW) architecture 
and outputs adhere to and implement ideas from honing 
theory (HT), a theory of creativity inspired by chaos theory 
and the theory of complex adaptive systems (CAS). 

NW as Creative, Self-Organizing Structure 
NW is hardwired to exhibit the key properties of real-
world complex systems through its modular, scale-free, 
small-world properties. NW architecture has a shallow, 
fractal, self-similar structure (4 node, 16 node, and 64 node 
modules) that allows multiple basins of attraction to form 
in parallel, over different timescales, and interact.  

NW networks are not neural networks; they do not adapt 
or learn by tuning weights between nodes through experi-
ence or training, nor do they evolve; nodes simply accept 
input and respond. Their LUTs do not change, adapt, or 
self-organize over time, but their dynamics do. 

Just like an experience or realization can provide the 
‘seed incident’ that stimulates creative honing, the pseudo-
randomly generated initial conditions provide ‘seed inci-
dents’ that initiate NW processing. After NW receives its 
inputs it is a closed system that adapts to itself (self-
organizes). Musical ideas sometimes unfold in an open-
ended manner, producing novelty and surprise, both con-
sidered hallmarks of emergence. A diversity of asynchro-
nous interactions (sometimes spread out in time) can push 
NW dynamics across different basins of attraction. Idea 
refinement occurs when users (1) generate and evaluate 
network architectures, LUTs and mappings, and (2) or-
chestrate, mix, and master the most aesthetically pleasing 
instances of these outputs. The role of mental representa-
tion is played by notes—their basic attributes as well as 
attributes formed by their relationships to other notes. 
Cellular Automata-like Behavioral Classes 
NW nodes have a significantly different topology from 
Cellular Automata (CA). While CA have a regular lattice 
geometry, NW has a hierarchical (modular), scale-free, 
small-world structure. Moreover, unlike CAs, NW is up-
dated asynchronously. However, similar to CA, NW exhib-
its Wolfram’s class one (homogenous), class two (period-
ic), class three (chaotic), and class four (complex) behav-
iour (Wolfram 1984), and—rather than converging to a 
steady state—tends to oscillate between them. This is be-
cause the nested architecture of NW allow multiple basins 
of attraction to form in parallel and over different time-
scales. Pruning the scale-free architecture by reducing the 
inputs to hubs insulates clusters and modules from one 

another, reducing their interactions. Network dynamics 
within a basin of attraction can get pushed out of the basin 
by delayed values entering the system. In other words, be-
cause in the context of the current pattern an “old ideas” 
can push the dynamics to a different basin, the system ex-
hibits “self-mending” behavior. This can result in musical 
transitions that lead to the emergence of new patterns and 
textures. 
Representational Redescription  

The network “makes sense” of its present in terms of its 
past by adapting to delayed values or “old ideas” entering 
the current pattern of activations. NW nodes hone by inte-
grating and simplifying inputs from multiple sources, and 
returning a particular value. In NW, a catalyst or “catalytic 
value” is one that needs to be received on the inputs of one 
or more nodes to maintain one or more periodic structure 
(perhaps playing a different role in each). As NW strings 
notes together (often in parallel) in a stream of music, its 
nodes act on and react to both the nodes in their cluster, 
and to other clusters, via their hubs. Bottom-up and top-
down feedback and time-delayed interactions are essential 
for an open-ended communal evolution of creative novelty. 

Periodic structures are often disrupted (stopped or modi-
fied) by the introduction of a new (delayed) value, alt-
hough sometimes this does not affect output. As interac-
tions between nodes occur through entry delays, periodic 
musical structures unfold at different timescales. Slowly 
evolving periodic structures can be difficult to hear (due to 
intervening events) but can have a “guiding” effect on the 
output stream, i.e., they affect what Bimbot, Deruty, Sar-
gent, and Vincent (2011) refer to as the “semiotic” or high-
level structure of the music emerging from long term regu-
larities and relationships between its successive parts. NW 
creates musical “ideas” that become the context for their 
further unfolding. Asynchrony, achieved by the (dynami-
cally changing) values of the nodes in the Entry Delay 
Module allow previously calculated node values (including 
their own) to be output later in time. NW outputs both 
manifests the dynamics of the network, and in turn gener-
ate the dynamics. As with the autopoietic structure of a 
creative mind, NW is a complex system composed of mu-
tually interdependent parts. 

Let us examine how a NW network could be said to take 
on characteristics of an autocatalytically closed creative 
mind. The nodes collectively act as a memory in the fol-
lowing sense. When a node is activated, it sums the last 
values received on its inputs and uses the sum to output the 
stored value (which is then delayed before being sent to 
receiving nodes). Nodes are programmed so that their indi-
vidual inputs can only store or “remember” the last value 
received. However, because nodes have 3, 4, 5, 14 and 39 
inputs (excluding their own), and the network is asynchro-
nous, a node (as a whole) can “remember” values spread 



out over time. How long a node can remember depends on 
its own ED value and the ED values of the nodes that par-
ticipate in co-determining its output. It is important to note, 
however, that nodes can also “forget” much of the infor-
mation they receive, if, for example, it receives different 
values on the same inputs since only the last ones are used 
when the node is activated. Again, how much it forgets 
depends on its own ED value and those of nodes to which 
it is linked. These memory patterns are distributed across 
the network. They are self-organizing because they can 
recur with variation, such that the whole is constantly re-
vising itself. NW chains items together into a stream of 
related notes / note attributes. As NW strings notes togeth-
er in a stream of music, its nodes are acting on and reacting 
to (feeding-back and feeding-forward information) to and 
from both the nodes in their cluster and to other clusters 
via their hubs. It would seem that bottom-up, top-down and 
time-based interaction / feedback are essential for an open-
ended communal evolution of creative novelty. 

Contextual Focus and the Edge of Chaos 
Some of NW’s music sounds uninspired; it contains no 
surprising pattern development (e.g., a sudden transition or 
gradually modulated transition in texture, mood, or tempo), 
and/or the patterns do not elicit innovative variations. To 
minimize this problem, NW uses an architecture that, in its 
own way, implements contextual focus. Clusters of nodes 
that are more interlinked and share similar LUTs process in 
a more analytic mode. Hubs, which connect clusters into a 
small-world network and merge more distantly related mu-
sical ideas, process in a more associative mode. Because 
clusters have fewer inputs than hubs they are more dis-
criminating than hubs. Hubs act as funnels, summarizing or 
simplifying the information they receive from multiple 
sources. Thus NW is hardwired to shift between analytic 
and associative modes by modulating the relative influence 
of top-down and bottom up processing. 

NW structures transform as they propagate in time. As 
mentioned above, all four behavior classes have been ob-
served. Class one and two dynamics do not change unless 
disrupted. When NW processes ‘associatively’ the output 
streams exhibit class two behaviour. When NW processes 
‘analytically’ it exhibits Class three (deterministic chaos) 
behavior, which does not repeat if unbounded. Class four 
(edge of chaos) balances change and continuity. 

Network dynamics often sound chaotic at the beginning 
of a piece–set in motion from an arbitrary, initial configu-
ration (‘seed incident’). Repetition and development of 
motivic materials and/or melodic lines then moves the sys-
tem toward one or more attractor(s) (or “grooves”), result-
ing in a more stable, organized musical texture. Nodes with 
different rules of interaction are apt to disturb the system, 
pushing it into another basin. If it returns to a basin, a simi-

lar texture returns. When tuned to midway between order 
and chaos, the global stable dynamics are repeatedly dis-
turbed. This pushes it either (1) into another basin, creating 
a transition to contrasting musical material, or (2) further 
from the attractor, to which it tries to return. NW exhibits 
something akin to goal seeking behaviour in how it moves 
toward or away from an attractor by keeping within a range 
of “desirable” values. This is similar to the use of function-
al tonality in western music, in which a piece departs and 
returns to its tonal center. Quasi-periodic dynamics provide 
a sense of organization through cycling musical textures, 
or a loose theme and variation structure. Disturbances may 
be caused by nodes with different rules of interaction, or 
by delayed values entering the stream. One factor that af-
fects the aesthetic quality of the output is the mapping of 
the node output values to a specific ED scale (mapped val-
ues are used to delay node outputs). This appears to pro-
duce a balance between current events and older ones that 
is at the proverbial edge of chaos. 

Conclusions and Future Directions 
NW’s unique architecture—in particular, its scale-free 
network and transparent relationship between rules of in-
teraction (LUTs) and MIDI output—was inspired by the 
science of complex adaptive systems as advocated by the 
honing theory of creativity. Its dynamics lie midway be-
tween order and chaos, and evolve—not through a Darwin-
ian process (c.f., Gabora, 2005; Gabora & Kauffman, 
2016)—but in the sense of generating cumulative, adaptive 
(in this case, aesthetically pleasing) change.  
 The number of possible LUTs that can generate ‘edge of 
chaos’ dynamics is extremely large. In the future we will 
expand the scope of NW to get a sense of to what extent 
the agreeable sound palette contributes to the aesthetic as-
sessment. “By hand” rule design and “by ear” verification 
of the results will be augmented by evolutionary program-
ming techniques guided by quantitative analyses. NW will 
also continue incorporating principles of HT. In turn, 
grounding the theory using NW is inspiring new develop-
ments in the understanding of creativity. 
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