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Abstract

In this work the problem of guided improvisation is ap-
proached and elaborated; then a new method, Variable
Markov Oracle, for guided music synthesis is proposed
as the first step to tackle the guided improvisation prob-
lem. Variable Markov Oracle is based on previous re-
sults from Audio Oracle, which is a fast indexing and
recombination method of repeating sub-clips in an au-
dio signal. The newly proposed Variable Markov Or-
acle is capable of identifying inherent datapoint clus-
ters in an audio signal while tracking the sequential
relations among clusters at the same time. With a tar-
get audio signal indexed by Variable Markov Oracle, a
query-matching algorithm is devised to synthesize new
music materials by recombination of the target audio
matched to a query audio. This approach makes the
query-matching algorithm a solution to the guided mu-
sic synthesis problem. The query-matching algorithm
is efficient and intelligent since it follows the inherent
clusters discovered by Variable Markov Oracle, creat-
ing a query-by-content result which allows numerous
applications in concatenative synthesis, machine impro-
visation and interactive music system. Examples of us-
ing Variable Markov Oracle to synthesize new musical
materials based on given music signals in the style of
Jazz are shown.

1 Introduction

Machine Improvisation systems have become powerful tools
for artificially augmented performance where machines pro-
vide some of the creativity to the musical outcome. With
the use of machine learning and algorithmic techniques, the
need for programming the compositional algorithms govern-
ing the artificial musical partner has become less burdening,
and the need for programming is largely substituted by pro-
viding musical examples from which the machine extracts
patterns or rules. Furthermore, it is now possible to rehearse
or perform with machines that can capture the style of the
live musician either from the musical contents or based on
pre-recorded examples to create improvisations.

As in any musical ensemble, the contribution of a part-
ner lies not only in his creativity and virtuosity as a soloist,
but also in his ability to listen to the companions. Moreover,
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to help such a coordination, it is possible for a group of
performers to agree ahead of time on some musical struc-
tures, that could be more or less tight and depending on the
creative choices of the participants. In our pervious experi-
ments with Machine Improvisation, the computer was used
to capture and create stylistic re-injections into a duo human-
machine performance, where the computer was able to ex-
tract significant musical structure from the live musician’s
input and creates variations that augment the soloist in vari-
ous unexpected, yet stylistically coherent ways (Dubnov and
Assayag 2013; Assayag et al. 2006). The creative choices of
the machine were controlled by a human operator who could
specify regions or select the dimensions of music materials
that the machine improvises on, as well as has some high
level control on the rate of recombinations or variations. Re-
cently, to alleviate the need for a human operator and to
endow the machine with greater autonomy, we have intro-
duced functions that would allow tighter integration between
the machine musical output and the human musicians. In
some sense, what we want to accomplish is to make the ma-
chine listen to its human partners and respond in a musically
meaningful way by guiding its generative mechanism to-
wards materials that conform to both the content and style of
the live performance. To achieve such a goal, we propose a
new guided synthesis algorithm using Variable Markov Ora-
cle, which is a variant of Audio Oracle (Dubnov et al. 2007,
Dubnov, Assayag, and Cont 2011) method that had been
already used and tested extensively in improvisation situ-
ations. The current paper extends earlier experiments on
querying the target oracle with a single frame to create ‘“hot
spots”, i.e. marking desired locations along the possible tra-
jectories for the algorithm to arrive at during improvisation
(Surges and Dubnov 2013), to use a sequence of frames as
query for the target oracle to match to. As the first step,
the experiments presented in the paper are done mostly of-
fline. In this case, the system could be considered more as a
meta-compositional tool, but with some extra technical chal-
lenges, the system has the capability to be ported to a real
time setting for use in live improvisations. Such future goals
will be discussed later in the paper.

2 Background and Related Works

The problem of planning and control that includes impro-
visation capabilities has also become an area of interest in



other domains. Specifying control signals to guide a system
into desired behavior is common in robotics and other dy-
namic systems, where adding a randomized strategy from
examples might add more flexibility to a system (Donze
et al. 2013). In the case of music, the need of the impro-
visation to conform to outside constraints, such as part-
nering with other musicians, is less strictly defined and is
with no critical safety specifications. However, undesired
notes can still be quite annoying, especially during live per-
formances where machines are involved. In music align-
ment problem, solutions are proposed to match the same
music piece in different media such as audio, midi, score,
etc (Ewert, Miiller, and Dannenberg 2011), but the solu-
tions were focusing on alignment, not creation. Another
approach to this problem is introducing constraints to the
improvisation system, as done in (Pachet and Roy 2011;
Roy and Pachet 2013). Other related examples that use time-
automata to provide flexible and even improvisatory perfor-
mances in coordination with a plan are the interactive score
projects, such as Antescofo (Echeveste et al. 2013) and Vi-
rage (Allombert et al. 2010). In such cases, a formal score
specification allows the system to modify its performance
according to expressive inflection or a musician, mostly lim-
ited to time changes within a tightly predetermined sequence
of events, thus making the system difficult to navigate the
specification in a highly non-linear temporal fashion, i.e. al-
lowing jumps and recombination of events in a way that the
proposed Variable Markov Oracle (VMO hereafter) is de-
signed for.

Taming of the randomly generative oracle is both a cre-
ative and a scientific task. In some respect, the operation of
the Audio Oracle (AO hereafter) and similar systems that
capture musical structure and generalize the creative process
through random permutation of permissible musical struc-
tures, presents a phase of Blind Variation (BV) in a cre-
ative process (Campbell 1960). To achieve a truly creative
outcome, such a process has to also include a phase of Se-
lective Retention (SR), or making choices as to which new
possibilities that the BV phase uncovered are actually going
to serve the more tightly specified and directed goal of the
overall artistic outcome. It should be noted that in order for
the SR phase to succeed, the divergent BV phase has to be
already relatively structured. Or, in other words, it is blind
but not random; i.e. it has the ability to create meaningful
alternatives which are not guided towards a specific goal.
The problem of guided oracle navigation is addressing this
second phase, after the basic structure of the musical style
“hidden” in the musical recording has been already uncov-
ered by the AO process. To allow for such control, we had
to modify the structure of the AO to expose some of the hid-
den states or underlying similarities of musical materials for
an outside query. Accordingly we name the newly proposed
method by VMO, since the probabilities of navigating the or-
acle structure, as will be explained in the paper, will now be
modified by the query. VMO is somewhat conceptually sim-
ilar to Markov Decision Processes approaches, but without
a training phase and rather focusing on immediate naviga-
tion. The term “Variable” is used since the oracle structure
captures variable length context dependency by tracking re-
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peated sub-clips of the input sequence.

VMO is along the line of research in Factor Oracle (FO
hereafter)(Allauzen, Crochemore, and Raffinot 1999) and
AO. The current research of VMO extends previous research
result in AO from having single frame query function to hav-
ing audio signal sequence query-matching functionality by
explicitly exploring how feature frames in an audio signal
are clustered together by the oracle structure. The construc-
tion algorithm for oracle structures allows real-time con-
struction and enables fast retrieval and recombination of sub
sequences (factors) of the original audio signal. In this work,
the newly devised construction and query-matching algo-
rithms of VMO are introduced. The paper is organized as fol-
lowed, in section 3, the problem and significance of guided
improvisation problem are described and elaborated; in sec-
tion 4, firstly a brief background on FO and AO is provided.
Then the main method for constructing VMO is presented.
Lastly the query-matching algorithm utilizing VMO is elab-
orated. In section 5, two examples of using VMO and the
query-matching algorithm to create new jazz music mate-
rials are shown. One example is guided synthesis in which
the query is a lead saxophone recording to guide the synthe-
sis of an accompaniment. The other example is to use the
accompaniment as a query to guide the synthesis of a lead
saxophone. Conclusions and future works are provided in
section 6.

3 The Guided Improvisation Problem

In our experience with machine improvisation, we have en-
countered several scenarios where interactions between the
machine and the human input are required; i.e. the machine
improvises along with another human musician, and we re-
fer to such machine improvisation as guided improvisation.
We found that specifying the design requirement of guided
improvisation is best done using musical terms. The sim-
plest case of improvisation control and interaction appear
in what we term as the “cadence” problem , which is how
to make the machine improvisation reach an ending point
together with the human musician automatically. We have
already used a simple single chroma query to lead AO to a
certain tonal area where it matches the soloist so we could
stop AO together with the musician in a situation where
both are chromatically consistent with respect to each other
(Surges and Dubnov 2013). In these applications, the musi-
cian would use a single long note as a query to a system that
would emphasize regions in the oracle that have a related
chroma.

Another generalized version of the “cadence” situation is
the “queueing” problem, i.e. how to trigger changes in the
selection of materials that the oracle structure is improvising
on in ways corresponding to the musical input. In the previ-
ous experiments, we could not distinguish among types of
musical materials simply based on a single chroma or note.
Moreover, changing the note or replacing the query in time
creates a “moving target” situation, that could indeed fall
into a desired trajectory, but without any assurances or algo-
rithmically efficient solutions. Therefore, we wanted to al-
low the system to listen to more than one single note, and
to be able to switch between regions or alternative oracles



based on a longer query. In this case, the sequential nature
within the query is taken into account. Intuitively, to make
regions distinct we need a “longer” index then a single note
query, especially if we would like to consider adding trans-
formations, such as transposition or pitch shift in the future.
So identification of melodic phrases or even timbral “ges-
tures” can be used to switch regions in more general ways
than the cadence problem case.

Operation of the guided improvisation can be also under-
stood in terms of ensemble and larger compositional rela-
tion between human and artificial partners. In an “accom-
paniment” scenario, the oracle is trained on a selection of
musical materials that support a live solo or lead musical in-
strument. One can think of it as a “music -1” situation, where
a solo input is driving an intelligent and creative playback of
an accompaniment piano or even a complete Jazz ensemble.
The role of the system then would be instantaneously harmo-
nizing, providing a bass line and even rhythm to a melodic
or polyphonic lead query. The example presented in the pa-
per for this type of guided improvisation is example I, pre-
sented in section 5, where the accompaniment mechanism is
simplified to recombination of recorded full-band jazz audio
frames.

A different configuration and musical use of the proposed
system is for constraining a machine generated solo for a
given song or standard. In such case, a recording of the back-
ing ensemble is provided as a query into an oracle trained
on an unrelated solo. The purpose of the query is to navi-
gate a different solo in a way that the solo licks would be
extracted in a fashion that matches the song composition. In
such case the query is used to create the solo, while the har-
monic and rhythmic grids are fixed in the query track. The
example for this configuration of guided synthesis is exam-
ple II in section 5. Taking turns or switching roles between
lead and support or between query and oracle is of course
possible throughout the course of the composition, and could
be specified by an external score or script that plans the in-
teractions ahead of time.

In short, as a next step to address the aforementioned “ca-
dence” and “queueing” problem from our previous result in
AO, a revised oracle structure, VMO, is introduced to al-
low querying with a sequence instead of a single frame. Al-
though the examples presented in this work are created in
an off-line fashion which makes the guided improvisation
problem into a guided synthesis one, we consider the cur-
rent work to be the necessary step toward real-time applica-
tion and implementation.

4 Algorithms

In this section the description of the VMO algorithm is pro-
vided. As mentioned in section 1, VMO is the new branch
grown out of FO and AO. Before getting into the details of
VMO, a compact introduction to FO and AO is provided in
this section.

FO is a variant of suffix tree that aims at fast index-
ing and retrieval of repeated sub-strings (factors) of a sym-
bolic sequence. FO could also be viewed as a finite state
automaton constructed in linear time and space with an
incremental approach. For a sequence of symbol @ =
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Figure 1: FO of () = “abbcabcdabc”. Dashed arrows are
the suffix links and normal arrows are the forward links with
labels of each symbol.

q1,92,---,Gt,---,q7, an FO is constructed with 7' states
and each symbol ¢, is associated with a state. Two kinds
of links, forward link and suffix link, are created during the
construction of FO. Two types of forward links are presented
in the structure; the first is an internal forward link which is a
pointer from state ¢ —1 to ¢ labeled by the symbol ¢, denoted
by d(t—1,q;) = t. The other forward link is an external for-
ward link which is a pointer from state ¢ to ¢ 4 k labeled by
G+ With & > 1. An external forward link (¢, g;11) = t+k
is created when

Qt+1 7F Qe
gt = qt+k—1
5(t7 Qt-'rk) = @

In other words, an external forward link is created when
the newly added internal forward link is unseen for previ-
ous occurrence of ¢;. The function of the forward links is
to provide an efficient way to retrieve any of the factors of
@, starting from the beginning of () and following a unique
path formed by forward links.

Suffix link is a backward pointer that links state ¢ to k£, ¢ >
k, without a label and is denoted by sfx[t] = k.

sfx[t] = k <= the longest repeated suffix of
{qla qz,. ..

Suffix links recognize repeated patterns in Q. The construc-
tion of FO could be done incrementally as new symbol
appearing and appending to the end of (). The algorithms
for constructing FO are provided in (Lefebvre, Lecroq, and
Alexandre 2003). An example FO structure is depicted in
figure 1. The example will be further exploited in section
4.3 to explain the decoding steps in the query-matching al-
gorithm proposed in section 4.3.

AO is the continuous extension of FO. The input O[t] is
a continuous time series sampled at discrete time and O[t]
could be multidimensional. To extend the domain of FO
from symbolic sequences to continuous time series, such as
an audio signal, a threshold 6 is introduced as a criterion for
determining if O[¢] is similar to states found in O[1...¢—1]
by following suffix links. 6 is associated with the metric over
the feature space given the signal. Two instances O[] and
Olj] are considered similar if |O[i] — O[j]| < 6. The met-
ric should be chosen according to the application area and
features used. For the rest of the paper, Lo-norm is used as
the metric between feature frames. The details of how AO
is constructed is provided in (Dubnov et al. 2007) and the

,qt } is recognized in k.



unsupervised way to find € is shown in (Dubnov, Assayag,
and Cont 2011).

4.1 Construction of Variable Markov Oracle

The main contribution of introducing VMO is to explicitly
identify the clusters of frames formed during the AO con-
struction. The clusters are formed by tracking suffix links
along the states in an oracle structure. The clusters formed
by gathering states connected by suffix links have the fol-
lowing properties; 1) states connected by suffix links are
guaranteed to have distances less than 6, 2) clusters related
to each other sequentially due to the fact that the cluster to
which a state belongs is dependent on its previous state and
thus the cluster to which the previous state belongs, 3) each
state belongs to only one cluster since each state has only
one suffix link.

To explicitly keep track of the clusters and also to main-
tain the on-line nature of the algorithm, the construction of
VMO combines FO and AO in the sense that the sequence
of cluster labels are treated as @, the symbolic sequence,
in FO construction. And pointers to O are tracked by in-
troducing a list of pointers, B = [by...b,...by], with N
the number of clusters formed and b,, a list containing the
pointers (states number, frame numbers) for the nth cluster.
In a nutshell, VMO accepts O as input and returns an oracle
structure keeping track of the cluster label sequence () and
also the lists of pointers to O. The lists of pointers are stored
in B and indexed by Q.

Let O be the incoming new signal and ¢ the time in-
dex. We use O[t] = O, to represent the newly observed
value or vector at t. Forward link from state ¢ to state j
labelled by ¢ is denoted by d0(i,q) = j. Suffix link from
state j to state ¢ is denoted by sfx[j] = ¢ without label-
ing. We use Q = [q1,...,qr] to denote the label sequence
for clusters of observations O = [Oj ...Or]. The initial-
ization of VMO is provided in Algorithm 1. In Algorithm
2, the incremental algorithm for an incoming signal is pro-
vided. For each new incoming samples O, a new state is
constructed with the internal forward link 6(t — 1,¢;) = ¢
created. The cluster label ¢; for O; is initialized as null.
The while loop from line 5 to line 15 in Algorithm 2 is the
standard process to assign external forward links and suffix
links introduced in (Lefebvre, Lecroqg, and Alexandre 2003;
Dubnov et al. 2007). Line 16 to line 25 in Algorithm 2 is the
newly introduced part of VMO that assigns the cluster label
to ¢; then appends the pointer of O to by, . In this paper, for
the algorithms described in pseudo codes, X [i] means get-
ting the item from an array X in its ith location; [a; b] means
appending b to the end of a; X, ; means accessing the ith
row and jth column of a matrix X; and X (4,:) means re-
trieving the whole ith row in a matrix X.

4.2 Determining Threshold via IR

The threshold 6 has to be specified before the construc-
tion of a VMO. In (Dubnov, Assayag, and Cont 2011), it
is shown that the 6 for constructing an AO could be de-
termined by calculating Information Rate(IR) over possible
0 values, then selecting 6 with the highest IR value. Since
VMO inherits all the properties from AO, the same approach

58

Algorithm 1 On-line construction of VMO
Require: Time series as O = 0105 ...Op

1: Create an oracle P with initial state pg

2: sfxp[0] < =1, B+ 0, N + 1

3: fort =1:Tdo

4: Oracle(P = D1 -.-Dt) —
Add-Frame(Oracle(P = p1 ...pi—1),04)

5: end for

6: return Oracle(P = py ...pr)

Algorithm 2 Add-Frame

Require: Oracle P =p; ..
1: Create a new state ¢ + 1

. pt, time series instance Oy

2: qei1 < 0, sfxp[t+1] <0

3: Create a new transition from ¢ to t+1, §(t, ¢s41) = t+1
4: k< sfxplt]

5: while £ > —1 do

6: D <« distances between O;41 and O[d(k, )]

7: if all distances in D is greater than 6 then

8: 5(k7qt+1) —t+1

9: k « sfxplk]
10: else
11: Find the forward link from £ that minimizes D

k'« 6(k,:)[argmin(D)]

12: sfxplt+1] < &
13: break
14: end if

15: end while

16: if £ = —1 then

17: sfxplt+1] =0

18: Initialize a new cluster with current frame index
bN+1 —t+1

19: B+ [B,bN+1]

20: Assign a label to the new cluster, g;41 < NV + 1

21: Update number of clusters, N <~ N + 1

22: else

23: Assign cluster label based on assigned suffix link
Qt+1 < Qi

24: bg,,  [bg, st +1]

25: end if

26: return Oracle P = py ... pi41

is applied here. In brief, given the definition of /R and let
o = {x1,29,...,2x5}; H(x) stands for the entropy of ,
IR(z?_lvl’n) = H(zyn) — H(zn|2]™ D

the value of /R could be approximated by replacing the en-
tropy term with complexity measure associated with a com-
pression algorithm. The complexity measure usually is in
bits used to compress x,, and (z,, |7~ 1). In (Lefebvre and
Lecroq 2002), a compression algorithm, Compror, proven
to have similar performance to gzip and bzip2 based on FO
is provided and the detail formulation of how Compror, AO

and IR are combined is provided in (Dubnov, Assayag, and
Cont 2011).



4.3

Let R be the query observation indexed by ¢, and denote R]t]
by R;. The matching algorithm provided in Algorithm 3
takes R as input and matches it to the target VMO, P, con-
structed by a target time series, O. The algorithm returns a
recombination path and a corresponding cost. The recombi-
nation path corresponds to the sequence of indices that will
reconstruct a new sequence from O that best resembles the
query. The cost is the reconstruction error between the query
and the best match from O given a metric on a frame-by-
frame basis.

The query-matching algorithm proposed in this section
is a dynamic programming algorithm. The algorithm could
be separated into two steps, initialization and decoding. In
Algorithm 3, the initialization is in line 1 to line 7. During
initialization, the number of clusters [V is obtained from the
cardinality of B. Then for the nth cluster, the frame within
the nth cluster that is closest to the first query frame is
found and stored. After the initialization step, the decoding
step (line 8~17 in Algorithm 3) iterates over the rest of the
query frames from 2 to T to find N paths, with each path
beginning with the state found corresponding to the respec-
tive cluster in the initialization step. To find the path start-
ing at the nth cluster at query frame number ¢, let 7 be the
list storing possible forward transitions in terms of the clus-
ter label indicated by (¢ — 1,:); then the possible frames,
b, for ¢ could be retrieved by indexing B with 7). The path
and cost at time ¢ for the nth path is then determined by the
minimum between R; and O[b']. A special point has to be
made here about line 10 in Algorithm 3: in line 10 the in-
clusion of M,, ;1 allows the query-matching algorithm to
have time-stretching capability when comparing two time
series since self-transition is allowed. At the end of the de-
coding step, the path with the corresponding minimum cost
and the cost itself are returned. It could be observed that the
proposed query-matching algorithm is similar to Viterbi de-
coding algorithm for Hidden Markov Model and max-sum
inference algorithm for graphical model (Wainwright and
Jordan 2008) in the sense that each update in the decoding
step depends only on its neighboring findings thus making it
efficient to compute and of no need to search over the whole
state space. A visualization of Algorithm 3 from initializa-
tion to decoding for one path among the N paths is shown
in figure 2.

Query-Matching with Markov Oracle

5 Guided Synthesis with Markov Oracle

In this section, Algorithm 3 is used to synthesize new music
signals by using a query music signal guiding a path travers-
ing the target music signal. This path matches the target mu-
sic signal and the query one in the feature space. The target
music signal in the guided synthesis application is treated
as the material for concatenative synthesis, and the query
music signal provides the map to how the materials should
be recombined. For the experiments described hereafter, the
steps are as followed: first, both the target and query music
signals are converted from time-domain waveform to appro-
priate representations. For this work, Chroma is chosen to be
the feature used for all the experiments, and is calculated us-
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Algorithm 3 Query-Matching

Require: Target signal in VMO, P, includes () the cluster
label sequence and O the signal, and query time series
R=[R;...Rr]

: Get the number of clusters, N + |B|

—_

2: Initialize cost vector C € R” and path matrix M €
RY*T with all zeros.
3: forn=1: N do
4: D < all distances between Ry and O[b,,]
5: M,,1 = by Jargmin(D)]
6: C,, = min(D)
7: end for
8: fort=2:Tdo
9: forn=1: Ndo
10: Gather the cluster labels for forward links
from M,, ;1 and M, ;1 itself.
n < Q[é(Mn,t—h )7 Mn,t—l}
11: Gather all states from possible clusters,
v Bly)
12: D < all distances between R; and O[V']
13: M,,; = b'|argmin(D)]
14: Cp += min(D)
15: end for
16: end for

17: return M [argmin(C)], min(C)

ing a window length of N with % overlap, frequency analy-
sis ranging between f,;, = 63.54H z to fy,4, = 22050H z
and 12 bins per octave. Then, the target music signal in
Chroma is indexed by VMO as O, and the query music sig-
nal in Chroma is used as query input, R, for Algorithm 3
to retrieve the recombination path M [argmin(C')]. At last,
the recombination path M [argmin(C)] is used to index the
target music signal synthesizing a new music signal with
overlap-add method using a window length of IV, % over-
lap and hamming window. For the examples shown below,
N is set empirically to 2'® = 32768 from listening judge-
ments by the authors. The music signals for the examples
are obtained from free shared music recordings in the style
of Jazz. Two lead tenor saxophone recordings are cut into
segments of 50 ~ 100 seconds long and are used as query
music signals, R. Full band recordings consist of drum, bass,
electronic guitar and piano of length 20 ~ 40 seconds are
used as O to construct VMOs. Although in theory, the query-
matching algorithm could be applied to all genres and fea-
tures, the combination of Jazz and Chroma is chosen since
by far the query-matching algorithm still works on frame
level matching between the query and the target music sig-
nal, and Jazz music allows more musical meanings to be
retained even if the musical structure is broken on a larger
scale (such as chord progression or sectional changes) due to
the recombination of audio frames from the original audio.

For the guided synthesis application, the self-transition
mechanism in line 10 of Algorithm 3 is skipped. Self-
transition capability is essential in retrieval tasks, but in the
synthesis application it gives undesired results since self-
transition allows too much freedom for the matching algo-
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(a) Att = 1 (Initialization for cluster a); {a, 9},
the pair of cluster initialized and frame matched.
At initialization, for cluster labeled as a the
choices for first frame are the stored in the list,
b = {1,5,9}, corresponding to b in Algorithm
.3. Assuming the closest frame in O to R; with la-
bel a is Oy, then the first frame for path beginning
with cluster a will be 9. With the help of keep-
ing track of B, the calculation between R; and
{01, Os, Oy} is straight forward.

oy i ..
/]

(b) Att = 2 (Decoding); {b, 10}, the pair of cluster identi-
fied and frame matched. At t = 2, the only possible cluster
following cluster a from ¢ = 1 is b, thus making frames in
b = {2,3,6,10} the possible candidates. Let O1o be the
closest frame from O[b'] to R2

7o 909090

(c) Att = 3 (Decoding): {c, 4}, the pair of cluster identified
and frame matched. At ¢ = 3, the possible clusters following
cluster b from ¢ = 2 is b and ¢ by examining the forward
links from state 10. The possible frames are now the union
of clusterband ¢, b’ = {2,3,4,6,7,10,11}. Let the closest
frame from O[b'] to R3 be Ou, the result path beginning at
cluster a is {9, 10,4}. The steps from (a) to (c) are done for
all other 3 possible paths as well

b e b
Q*-0--€

Figure 2: Decoding steps: Consider the target time series
represented as the VMO shown above, the same from fig-
ure 1. The light gray parts of each subplot are the same from
figure 1. In each subplot, parts marked by black with thick
arrows indicate the path for the chosen state, dark gray ones
with thick arrows represent possible paths and filled circle
represents the candidate states. Numbers on the thick black
arrows are step numbers. In this example, the query R, is
assumed to have 3 frames and the subplots demonstrate hy-
pothetic steps for the path started with frames in O in cluster
labeled by a (among 4 possible paths started via a, b, ¢ or
d). Here the visualization of the query time series is omitted
and the path is chose generically to demonstrate Algorithm
3. For brevity and clarity the self-transition mechanism in-
troduced in line 10 of Algorithm 3 is omitted in this figure,
but the operation could be done straightforwardly by consid-
ering Q[M,, +—1] as candidate cluster to transition to.
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Figure 3: Example I. (Upper) Chromagram of the saxophone
lead. (Middle) Chromagram of the query-guided accompa-
niment. (Bottom) Chromagram of the free improvised ac-
companiment.
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Figure 4: Frame-by-frame Ls-norm between Chromagrams
of lead and accompaniment for Example I. The {u, 0} of
Ly-norm error for guided-synthesis and free improvisation
are {0.13,0.07} and {0.15,0.06} respectively.

rithm to “stutter” in the same state without progressing. To
discard self-transition functionality in Algorithm 3, line 10
of Algorithm 3 is replaced with 7 <— Q[d(My, 1—1..)].

To qualitatively evaluate the query-guided synthesis, a
free (unguided) improvised accompaniment using the AO
mentioned in (Surges and Dubnov 2013) is synthesized as
well to compare with the query-guided version. Example I
is shown here and depicted in Figure 3. To aid the evalu-
ation with quantitative measures, frame-by-frame distances
between the Chromagrams of query music signal and the
two synthesized accompaniments are plotted in Figure 4.
From Figure 4, it is observed that the errors could poten-
tially be correlated. After examination of the parameters
used, we conclude that the possible correlation is due to the
fact that the query signal used in this case might be too far
from the target signal in the feature space, thus leading to
rather indistinguishable synthesis between the query-guided
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Figure 5: Example II. (Upper) Chromagram of the saxo-
phone accompaniment. (Middle) Chromagram of the query-
guided lead. (Bottom) Chromagram of the free improvised
lead.

and free improvised version from the signal point of view.
But in Figure 3, it could also be observed that the query-
guided accompaniment did have a more similar structure to
the lead than the free improvised one. The phenomenon is
clearer at the beginning of the signal. Aurally, when lis-
tening to the mix of the lead and the synthesized accom-
paniments, we observe that the free improvised accompa-
niment has a better sense of continuation in terms of how
sub-clips of the original signals are recombined. In con-
trast, the query-guided accompaniment sounds more “bro-
ken” due to the use of shorter sub-clips to match the query.
Nevertheless, in the case of the free improvised accompani-
ment, the original lead and the accompaniment sound sepa-
rately from each other even if the tonality of the lead and the
original accompaniment recording were chosen to be com-
patible with each other. In listening to the mix with query-
guided accompaniments, the synchronization between the
lead and the accompaniment in terms of harmonicity is more
obvious. The sound examples could be found at the project
page (http://chengiwang.com/projects/MO.php). For the ex-
amples, the left channel is always the query, which stays un-
changed, and the right channel is the new generated audio
either by query-guided (VMO) or free-improvisation (AO)
approach.

After the experiment of using a lead saxophone as the
query and the accompaniment recording in VMO as tar-
get, another experiment, where the roles of the lead and the
accompaniment are switched, is performed. Example II is
shown here in Figure 5. The Ly-norm errors for example 11
are depicted in Figure 6. The sound examples for example II
are also accessible by the project webpage mentioned above.
For example II, similar conclusions to example I based on
corresponding plots could be drawn. But with example II,
the Ly-norm error plot in Figure 6 reflects the fact that the
query-matching algorithm is able to find the path that mini-
mizes frame-by-frame distances between the query and the
target. By listening to example II, we find it clearer that the
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Figure 6: Frame-by-frame Lo-norm between Chromagrams
of lead and accompaniment for Example II. The {y, o} of
Lo-norm error for guided-synthesis and free improvisation
are {0.14,0.05} and {0.18,0.06} respectively.

synthesized lead guided by the accompaniment conforms to
the harmonic changes and dominant melodic lines of the
accompaniment. In general, although aesthetically there is
no clear and obvious evidence that using query-guided ap-
proach is superior than our previous approach of using un-
guided machine improvisation, it is still asserted that the ma-
terials generated using query-guided approach sound musi-
cally meaningful and perform a better job conforming to the
query used than the ones generated with free improvisation
approach. Extra examples of both cases are accessible via
the project webpage.

6 Conclusions and Future Works

In conclusion, the problem of control / guided improvisation
is described, and a new method, VMO, focused on extend-
ing previous results using single frame query to sequence-
of-frame query is proposed. The VMO method provides the
necessary structure for efficient algorithms to be devised for
the query-matching task. Audio examples are generated to
show the capability of the query-matching algorithm in the
context of guided improvisation such that unrelated saxo-
phone leads and jazz accompaniments are used as query and
target oracle interchangeably. The results from current ex-
periment show that the newly proposed VMO method does
provide a path to solve the “queueing problem” mentioned
in section 3. The next step for this work is to incorporate
mechanisms, such as user defined threshold or criteria, for
the query-matching algorithm to “turn off” in the middle
of a signal if the query is too far from the target in the
feature space and makes the query-matching meaningless.
Real-time implementation will also be an important next
step which enables practical performance / rehearsal experi-
ments with musicians and composers.

We list some aspects of musical interaction that are not
addressed by this work in the following: 1) tight synchro-
nization issues, such as beat matching. Our system is not
aware of rhythm, meter or tempo at this point. Accordingly,



although the query might create timing shifts that are nat-
ural and even interesting in some genre, it will not work
well with music that uses rhythmic patterns as the main ex-
pressive tool. 2) In musical practice, synchronized entries
of a beat, or tightly triggered tutti sections, are a common
artistic tool. Allowing the oracle and the improviser to hit
notes together after silence, or trigger notes sequentially in
a precisely timed way is a task for future research. 3) Use
of harmonic progression / variations / substitutions as a con-
straint for the oracle can be accomplished indirectly in our
current system if the harmonic grid or the chord sequence
is used as a query. We consider in the future the possibility
of specifying a chord progression symbolically and provid-
ing it as a query to a recording. One problem with using
such an approach is that harmonic theory and chroma anal-
ysis of audio are difficult to reconcile, and even more sig-
nificantly, should not be directly matched since natural har-
monic and melodic processes allowed in the improvisation
fall under same chord or harmonic label, especially if we
consider chord prolongations, substitution and many other
creative techniques that are not explicitly notated in the sym-
bolic representation of Jazz standard.

In general, these issues relate to even a more general prob-
lem that we call a “duet problem” that appears when more
or less free improvisation happens between two musicians or
between a musician and a machine. A related problem in off-
line composition using Midi / symbolic sequences was en-
countered earlier in composing “Composer Duets”, briefly
described in (Dubnov and Assayag 2013). The idea there
was to let the oracle try to match a polyphonic pattern from
a duet recording. We do not exactly have such situation in
audio, since normally we do not have a multi-track audio
available for oracle training, so that one track could be used
for query while another one for improvisation. We might in
the future experiment with creating recordings where two
tracks are produced specifically for the accompaniment task.
In such case, guiding of the oracle output on one track will
be done by querying a second related track.
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