
Genomic: Combining Genetic Algorithms
and Corpora to Evolve Sound Treatments

Thomas M. Stoll
Buffalo, NY USA

Abstract
Genomic is Python software that evolves sound treat-
ments and produce novel sounds. It offers features that
have the potential to serve sound designers and com-
posers, aiding them in their search for new and interest-
ing sounds. This paper lays out the rationale and some
design decisions made for Genomic, and proposes sev-
eral intuitive ways of both using the software and think-
ing about the techniques that it enables for the modifi-
cation and design of sound.

Rationale
While there are a good number of examples of systems for
the evolution of sound synthesis parameters, there are fewer
that consider real audio and its treatment. To the knowl-
edge of the author, there are few systematic evolutionary ap-
proaches to modular sound design that would be directly rel-
evant to the interests of a composer using musique concrete
or other techniques using fixed media. The work that has
been done mainly involves spectral representations of sound
and operations in that domain (Caetano, Rodet, and others
2010), with some work done on sound design using inter-
active genetic algorithms (Johnson 1999), which it would
seem to lend themselves naturally to use by composers and
creators. Many important achievements are summarized in
Evolutionary Computer Music (Miranda and Al Biles 2007).

This paper aims to describe the beginnings of a sys-
tem that combines two heretofore unrelated techniques,
namely genetic algorithms (GAs) and corpus-based process-
ing (CBP) (Schwarz 2007) of audio. Some of this paper is
speculative, in that it lays out possible avenues for explo-
ration of the ways that these two techniques can comple-
ment one another and create a system that is defined by their
combined usage. The musical (or sonic) goals are clear: the
author wishes to evolve sound treatments that modify one
source sound to sound more like another target sound, and
to be able to track the transformations as they are explored
by the GA. The author by no means claims to have conclu-
sively reached either of these goals, but presents an overview
of steps taken thus far towards solutions.

Intuitively, the use of GAs is a logical choice for a sound
designer or composer: they both take a bottom-up approach

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to solve problems or optimize solutions. While there might
be a perfect solution for a sound transforming seamlessly
from source to target, the user may also be interested in in-
termediate results. Genomic, and corpus-based processing
in general, is very much inspired by and perceived by the
author as an extension of work by Trevor Wishart. In Sound
Symbols and Landscapes, Wishart describes seamless sound
transformations from a bell to male voice, an utterance of
the word “listen” to birdsong, and the analogous nature of
the sounds ‘book-slam’ and ‘door-slam’ (Wishart 1986). It
is expected that higher level functionality will emerge once
a lower level system is in place. As the goals become clear
and attainable, one would be able to subvert more straight-
forward procedures and use this software in different ways
that would take advantage of a fuller understanding of its
inner workings.

Corpus-based system
The system is written in Python using SuperCollider as an
audio engine or back-end. SuperCollider was chosen be-
cause of its flexibility as a synthesis engine and language
and because of the opportunities for eventual use as a real
time environment. Sound design is a critical component of
the electroacoustic composer’s process, and a composer can
ideally design sounds in real time within SuperCollider, and
then load those synthesis definititons—SynthDefs (see Fig-
ure 1), to use the proper nomenclature—into the Python sys-
tem. Analysis data is stored either as JSON (JavaScript Ob-
ject Notation, a common, lightly-structured data storage for-
mat) or as memory-mapped Numpy arrays. Further storage
methods necessary for persistance and scalability are under
investigation.

Sound design in Genomic is conceived in a modular way.
In the first iterations of its design, there was one synthesis
module that sampled a sound, modified it, and analyzed it.
In the current version, each step in the processing chain is
handled by a different module or node, and the treatment
nodes, “EfxNodes”, are swapped in as needed. In addition,
two topologies have been explored: series and parallel. In a
series layout, the result of each step is fed into the next pro-
cessing step; in parallel, all stages are processed simultane-
ously and the results are mixed. In the former, the ordering is
potentially important, as any subtractive or additive aspects
of one node would be processed in different ways depend-

Musical Metacreation: Papers from the AIIDE Workshop

50



SynthDef(\efx_comb_mn, {
|outbus=21, inbus=20, delay=0.2,
decay=1.0, gain=1|

Out.ar(outbus, (CombC.ar(
In.ar(inbus, 1),
2.0,
delay,
decay)

) * gain);
}).load(s);

Figure 1: SuperCollider SynthDefs define all nodes, includ-
ing audio processing algorithms, referred to as “EfxNodes”
in Genomic. This allows the user to quickly extend the set
of possible transformations.

ing on the ordering. In the future, there are plans to encode
the layout of modules as genes so that more complex layouts
are possible. The head node could easily be changed to any
number of sampling algorithms, and many different config-
urations of processing networks are possible. It is trivial to
change the analysis routine and, as a result, the data that is
to be collected.

GA system
The author has built a simple but effective genetic algo-
rithm framework in Python suited for the present purpose.
In its earliest versions, it was not dependent on or integrated
within the corpus-based framework, but was used to fill a
corpus with units/sounds generated by the evolved parame-
ters. Currently, the system employs a corpus and much of
the accompanying functionality. This allows the program-
mer to rely on the database to store information, and frees
one to deal with sound material and analysis material as ab-
straction, only tracking index numbers or tags for sounds.
In most applications, there are some “client-side” or “user-
side” data structures that maintain the current state.

Representation of genes
The genes in Genomic map directly and indirectly to pa-
rameters for sound treatment. Each gene encodes one pa-
rameter or acts as an activator. The mapping is based on
mapping from 8-bit integer representations for genetic op-
erations to floating point, continuous valued parameters for
audio realization. There are potential drawbacks to using
such a method. Imagine tuning a notch filter—or any filter
with a narrow effective range—with only 256 possible val-
ues for the center frequency. One would have a hard time
precisely matching this filter to a sound in a mix to be atten-
uated, a real concern if these techniques are to be applied to
real world applications. Possible solutions for this include
increasing the size in bits of the representation for each gene
or assigning two 8-bit genes to cover one 16-bit parameter.
The latter brings to mind the “coarse” and “fine” controls on
many synthesizers. Other solutions involve exploring float-
ing point representations of genes (Budin, Golub, and Budin
2010).

Another aspect of Genomic that is loosely based on nat-
ural systems is the availability of activator genes. In much
the same way that some genes might influence or “turn on”
other genes or groups of genes, there are activator genes
in Genomic. These activators perform a very simple task,
but one that affects the resulting sound designs in profound
ways. Imagine a scenario without activation genes. In this
case, the system allows for a series of parameters that are set
randomly that then evolve through mutation and crossover
operations—the more or less standard genetic algorithm.
Recall that genes are mapped to sound transformation pa-
rameters and that each parameter will contribute at least
slightly to the output sound. One solution would incorpo-
rate a gain or scaling factor in each sound production phase,
but even this would mask the potential problem of too many
processes contributing to the mixture. Genomic can be set to
use a set number of activator genes with a relatively larger
pool of available sound treatment modules for a more se-
lective and simple system. These activation genes need not
be mere on-off switches; they could be encoded in different
ways to influence the combinatoriality of modules. Table 1
shows a genotype with activator genes, parameter genes, and
their raw and mapped values.

Fitness and similarity
While there is ample room for further variation and nuance,
the main paradigm for the fitness function is some measure
of similarity of a modified source sound to a target sound.
Since there is no guarantee that a sound is modifiable such
that some processed variant sounds exactly like a given tar-
get sound, the goal of similarity is one likely approached but
not actually reached. Genomic offers the user flexibility to
define different low level analysis routines, different meth-
ods of summarizing and segmenting data across audio files
or sequences, and other high level control over goals.

The most simplistic—and ineffective—fitness functions
would rely on comparing the raw audio data of two sounds.
For example, consider the comparison of a sound and its at-
tenuated variant. Significantly more effective, but still crude,
are comparisons utilizing windowed analysis data, either
Short-term Fast Fourier (FFT) coefficients, Mel-frequency
Cepstrum Coefficients (MFCCs, a good general measure of
timbre), or even Chromagram data, gathered from Constant-
Q Frequency Transform (CQFT) terms collected into sets
of pitch classes. The author has used raw MFCCs ex-
tracted over the length of each sound file (25 analysis points
per second) and concatenated into a one-dimensional array
for comparison with marginal results. The current system
makes available to the user MFCC, Chromagraph, and am-
plitude envelope data averaged over temporal segments. For
the purposes of this paper, analysis data is averaged over the
entire duration of each (short) sound file.

One central feature of corpus-based (or unit-based) sum-
marization of sound is that the definition of a unit within
a corpus allows for the summarization of audio data over
a temporal segment, or tile. This tile can be the entire
sound file or sonic event, but it can also be a salient seg-
ment within a changing sound. The definition and imple-
mentation of a segmenting scheme is left up to the user, and

51



Gene Raw, calculated values. Mapping
Activator 256 / 23 = 0 Activate gene 0.
Activator 256 / 144 = 2 Activate gene 2.
Activator 256 / 151 = 2 Activate gene 2.

Gene 1 101 / 256 = 0.394 Gain stage gene - active.
Gene 2 212 / 256 = 0.828 Comb filter gene, delay time - not active.

65 / 256 = 0.254 Comb filter gene, decay time.
92 / 256 = 0.359 Comb filter gene, gain.

Gene 3 21 / 256 = 0.082 Filter gene, center frequency - active.
102 / 256 = 0.398 Filter gene, gain.

Table 1: One implementation of activation genes. Activators are read to determine which genes are active, duplicates are
ignored. The genes themselves are used as needed for active genes. Mutation and crossover still take place, even for unexpressed
genes.

may be adapted to different types of material, just as basic
analysis is. There is a tradeoff, but there can be real sav-
ings in memory and complexity by reducing data from 25
analysis points per second to 1 or 2, especially if there are
hundreds of sounds or huge populations of potential treat-
ments. The use of averaged data masks potential complexity
and nuance—especially that which takes place on timescales
smaller than an analysis period or segment length—and vi-
olates an assumption that one can capture all the salient
features of an audio recording. The authors of FeatSynth
(Hoffman and Cook 2007) address some shortcomings of us-
ing features in controlling a synthesizer parameterized over
frames, and these concerns apply to Genomic’s analysis over
frames of audio data. An implicit premise is that as the
features detected in analysis are necessary approximations
of more complex data; the parameterization of Genomic’s
inputs allow for temporal changes that are equally difficult
to pinpoint or directly control. Further work needs to be
done in order to explore the properties of parameter encod-
ing, analysis space, the mappings between them, and their
time-based changes.

Finally, there are supplements to the fitness function. In
addition to measuring similarity to some target, the author
has explored measurements of diversity, which included
measuring the distance of each member’s data to an aver-
age over the entire population. Intuitively, this is expected
to separate the individuals as they explore using parameter
combinations. Further work is necessary to show how this
strategy may be applied more effectively. In addition to di-
versity, there is the possibility to measure vitality of any in-
dividual. One may easily measure vitality by comparing the
amplitude envelope of a prospective population member to
that of the target’s. This calculation may also be used in de-
ciding whether to admit an individual to a population, even
in the absence of other more intensive analyses.

Integrating Corpora and GAs
The most basic combined use of a GA system and a cor-
pus uses the database of sounds as the repository for analyt-
ical representations of phenotypes—audio files are referred
to indirectly during evaluation by fitness assessments based
on comparisons of analysis data. This use case also uses a

corpus as the tracking mechanism of a population’s mem-
bership, past and present. Discarded members are removed,
and the final state of the population is the entire corpus. In
early versions of Genomic, there was no need for a corpus,
as only the current population members were maintained in
an array.

The use of a structured database enables the tracking of all
members created throughout the history of a population. It
allows, at least in theory, for a full history of said population
if the user is able to record changes of population state. Indi-
viduals can also be assigned tags within the corpus, although
the tagging mechanism is limited to one tag per individual.
The possibility of recovering past “dead end” individuals at
a later time does suggest techniques where past sounds are
revived and reentered into the active population. In order to
maintain groups of genomes and their resulting phenotypes-
as-analysis-data, more than one corpus may be used. This
concept might even be expanded to include realizations of
multi-population and niched evolutionary schemes that use
corpora themselves as (sub-)populations, with the ability to
freely pass genomes among different corpora and quickly
recalculate relevant fitness and statistical information.

The basic visual representation of a corpus presented here
is a two-dimensional array with columns containing indi-
viduals. Figure 2 shows a newly initialized population with
the seed/source sound in column 0, the target sound in col-
umn 1, and the members of the population in the remaining
columns. As a population evolves, it is trivial to produce
these views, and it is quite easy to animate the changing
population over time. In Figure 2, one can clearly see some
individuals that are incomplete; showing up in the graphic as
black columns. These individuals were produced by a com-
bination of parameters that resulted in silence or some other
pathological state.

Experiments in Evolving Sound Treatments
Several experiments were run with Genomic to test its
promise as a compositional tool. Although the tool is in
need of refinement, it has shown encouraging results. In
particular, the author investigated several variations on the
fitness function and several topologies for the network of
sound treating modules.The basic outline of the task is out-

52



Figure 2: Initial members of a population with randomly
seeded genomes. Each row represents a normalized MFCC
bin.

lined in the following list:

1. Choose two sounds. One is the source and one is the tar-
get.

2. Analyze and add to a new corpus. Tag each with an inte-
ger: -1 and 0 respectively.

3. Generate random parameters for genomes for each popu-
lation member.

4. Analyze and add each to the corpus. Tag each with an
integer corresponding to the generation number.

5. For every age increment, mutate genomes according to
some probability; add to the corpus and analyze newly
mutated population members.

6. At multiples of the age counter, rank all the population
members according to the fitness criteria using units ex-
tracted from the corpus.

7. Mate the fittest individuals (using crossover) to generate
new individuals. New individuals replace weakest indi-
viduals.

8. Repeat steps 5-7 until some stopping condition has been
met.

As discussed above, there are many nuances and varia-
tions on this general scheme that will have to be compared
and tested. Preliminary tests have been more informal with
the aim of demonstrating basic feasibility of this system. By
looking at how the populations developed and evolved over
generations, a few trends have become apparent. The first
attempt at a fitness function used similarity between MFCC
data as averaged over the entire sound file (a unit covering
the entire duration). If the fitness function is realized as a
similarity measure between population members and the tar-
get individual, there is a tendency to find a single solution
rather quickly that dominates. It appears that the GA has
difficulty exploring the solution space.

Figure 3: Oscillatory pattern in evolving population using
equally-weighted fitness function.

Overall, the reliance on timbre alone as a metric led to
some development of novelty, but more often results in
sound results that are inconsistent.

A more sophisticated approach leads to slightly better re-
sults. Instead of relying solely on similarity to a target,
the author tried an experiment with a three-aspect fitness
measurement. In addition to measuring similarity in tim-
bre (MFCCs), the fitness function took into account sim-
ilarity in amplitude envelope data and dissimilarity to the
average of the entire active population’s timbre measure-
ments. This last criterion is a crude measurement of diver-
sity within the population. Moreover, the three aspects were
weighted, first equally then unequally. Equal weighting re-
sulted in sounds that oscillated between general similarity to
the source sound and general dissimilarity—see Figure 3.

By adjusting the weights of the fitness function, it was
possible to evolve a population that gradually changes over
many generations. The choice of weights is a matter of hand
tuning, but Figure 4 does seem to suggest a gradual change
towards the target sound. Again, this data is preliminary,
but the sounds that emerge as a result of these processes
do sound novel and do include combinations of effects that
might not otherwise be arrived at by random or purposeful
adjustments.

Conclusions and Future Work
The author has demonstrated a functional system that
evolves sound treatments with a source sound, a pool of
sound treatment algorithms, and a defined target sound.
While the system is crude and in need of much refine-
ment, it demonstrates potential as a tool for the composer
or sound designer exploring his or her options for deriving
novel sounds. The most pressing issues are the weighting
of each component of the fitness function, the expansion of
genes to use 16 bits per parameter, and the use of segmented
sounds in the corpus-based analysis. Especially promising
is the use of multi-objective fitness functions (Konak, Coit,

53



Figure 4: After 3000 generations with unequal weights,
there is some evolution towards a goal.

and Smith 2006).
As easy as it is to speculate about possibilities for any

system before it has been fully implemented, it is useful to
consider some possible applications, as they can guide and
influence development of Genomic. Major unexplored ideas
involve expanding upon some preliminary attempts to gen-
eralize the system: there can obviously be more modules for
sound design and more possible topologies for connecting
them to one another. More complex sounds are possible with
the inclusion of sound treatment algorithms such as con-
volution or delay-with-feedback effects within the system.
Eventually, the author would like to generalize the software
enough to incorporate direct sound synthesis and the use of
multiple source sounds.

There is an opportunity to explore more complicated, but
ultimately more rich, analysis methods. In addition to tak-
ing into account more of the temporal domain, one might
mask or weight the analysis data itself. As a very simple
example consider weighting the similarity measurement to
take in to account the predominance of higher frequency
ranges in the attack portion of a sound versus the decaying
segment. More generally, Genomic should fully incorporate
segmented sound analysis.

References
Budin, L.; Golub, M.; and Budin, A. 2010. Traditional tech-
niques of genetic algorithms applied to floating-point chro-
mosome representations. sign 1(11):52.

Caetano, M. F.; Rodet, X.; et al. 2010. Independent ma-
nipulation of high-level spectral envelope shape features for
sound morphing by means of evolutionary computation. In
Proc. of the 13th Int. Conference on Digital Audio Effects
(DAFx-10), 11–21.

Hoffman, M., and Cook, P. 2007. The featsynth frame-
work for feature-based synthesis: Design and applications.

In Proc. International Computer Music Conference (ICMC-
07), 184–187.
Johnson, C. G. 1999. Exploring the sound-space of synthe-
sis algorithms using interactive genetic algorithms. In Pro-
ceedings of the AISB’99 Symposium on Musical Creativity,
20–27. Society for the Study of Artificial Intelligence and
Simulation of Behaviour.
Konak, A.; Coit, D. W.; and Smith, A. E. 2006. Multi-
objective optimization using genetic algorithms: A tutorial.
Reliability Engineering & System Safety 91(9):992–1007.
Miranda, E. R., and Al Biles, J. 2007. Evolutionary com-
puter music. Springer.
Schwarz, D. 2007. Corpus-based concatenative synthesis.
Signal Processing Magazine, IEEE 24(2):92–104.
Wishart, T. 1986. Sound symbols and landscapes. In Em-
merson, S., ed., The Language of Electroacoustic Music,
41–60. Basingstoke: MacMillan Press.

54




