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Abstract

Automatic arrangement is the problem of transforming
an input score into a full orchestration, e.g. realized
with samples. A subproblem, on which arrangement
depends, is to establish the dynamic levels of individual
parts, their articulations, and how parts are to align.
A new kind of structural analysis is described: the in-
terpretation of music means the delineation of existing
structure, so that the performance synchronizes with
the music. These ideas are realized in a system that
creates fully articulated string orchestra renditions of
concerti by Bach and Vivaldi. While still at an early
stage, the system demonstrates how structural anal-
ysis can be deployed to solve complex musical tasks.
We conclude with some speculations about the future
of musical practices as suggested by this research.

Introduction
The articulation problem is, very roughly, to assign to
an input score dynamics and instruments with their
specific performance manners – springing bows, Flat-
terzunge, cuivré – such that the result is “musical.”
While difficult or impossible to define musicality, it is
easy to understand what it isn’t. Get someone to listen
to music they like on headphones while you add dynam-
ics by randomly twisting the volume knob. Did they
like it? You effectively added a noise layer unrelated
to how the music was behaving. Dynamics and artic-
ulations should not seem like an extra layer, or noise,
but part of the music, all factors operating in concert.
In some sense, dynamics, articulations, orchestrations
– all called “articulations” in this paper – must be syn-
chronized with or to the music.

The word “articulate” once meant “joint,” referring
to how parts of things are connected to form wholes.
Articulation implies difference with the aim of con-
structing new groupings. The groupings must relate to
the behavior of the music. Orchestration, for instance,
should not be a haphazard layering of available sounds,
but should add or a develop structural levels that bring
out structures of the input score. We show how this
idea can be made precise.
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Previous research
Related research is reviewed in (Kirke and Miranda
2012) – methods for “expressive music performance.”
While performance generation is allied to our articula-
tion problem, we point out a few significant differences.

First, performance methods lean to the modeling of
conventions, whether by rule or by machine learning,
with the aim of “sounding human,” whereas no attempt
is made here to model a human performance. Articula-
tion is instead conceived as a sonification of structure,
an elucidation of a constructed perspective on an in-
put score. The idea is to induce an articulation over
a structure. The hope is that though semantically ag-
nostic, the results might nevertheless make sense from
semantic points of view. But we also wish to generate
“creative” (unconventional) interpretations, and in fact
to investigate the problem of creatively deploying im-
mense sample sets without being bound to conventional
articulative precepts.

Second, performance methods work by modeling lo-
cal structures – phrases and smaller note-groupings. In
the case of phrase-structural models (Friberg, Bresin,
and Sundberg 2006; Todd 1995), each phrase is shaped
using a general rule on features such as internal bound-
aries, scale degrees and registral high points – without
attention to the particular musical relations within or
among phrases. For case-based and statistical methods
(Suzuki, Tokunaga, and Tanaka 1999; Widmer 2001;
Kim et al. 2012), a database of local note-groupings
along with their performance parameters is queried in
the construction of a new performance. Our model
seeks to unite local and global structure, so that lo-
cal contrasts operate within a set of relations spanning
the entire piece.

A structural approach
In this paper, the approach is entirely structural. A
structure is a set of notes (or other values) for which a
well-defined property holds. It can be reasoned about
without information loss.1 With a notion of structural

1An example is the Z-chain, described in (Handelman,
Sigler, and Donna 2012), used there to generate orchestra-
tions.



composition, we build more and more complex struc-
tures that we are still able to reason about. In this
paper we are concerned mostly with patterns of simple
structures. We construct compositions of such patterns,
showing how a low -dimensional “summary” structure
can be derived from this space. The result is interpreted
as an “articulation vector,” that can be used to model
arbitrary musical features, such as dynamics, selecting
samples for given instruments, etc.

The notion of (well-defined) structure is in contrast
to semantic objects, for example the phrase. There is
no universal computational definition of a phrase, since
the delineation of musical phrases is subject to human
interpretation.2 While it would be possible to invent a
well-defined structure and call it a phrase (i.e. use it
as a stand-in for the semantic concept of phrase), any
use that depended on the correctness of the semantic
tag would be subject to error. Therefore a purely struc-
tural approach would prefer to remain agnostic about
semantic values, while relying on the constructive and
combinatorial properties of well-defined structures to
elucidate relationships within a score.

Background: the articulation problem
Articulating music is not a trivial problem. Not every-
thing works: as suggested, it is necessary in some sense
to “follow the music,” lest we merely add additional
layers of noise. The music may have distinctive parts,
which could be orchestrated distinctively. But should
they be loud or soft? Musical cues might suggest one
way or another, but in principle there is no reason why
anything must be performed in any given way, subject
to being performable.

Dynamics should be dynamic: some parts of the mu-
sic are soft, others building, others with sharp con-
trasts, etc. Although there is no a priori reason why
any note must be either loud or soft, there is nonethe-
less a more global condition we should try to fulfill: we
should choose louds and soft in such a way as create
larger groupings and patternings, preferably at differ-
ent scales. There might be a long soft part, a mostly
soft part, quick alternations, longer and more complex
alternations, etc. In other words the loudnesses should
generate structures.

Articulation encompasses a number of different
problems, including segmentation, grouping, sectional
boundaries – problems for which general solutions do
not exist. The boundaries must (or might) then be
realized with specific manners, creating distinctions in
large and small parts.

In multi-part music, polyphony issues arise concern-
ing the relative foreground and background of voices,
and the problem of designating a “Hauptstimme” or
main voice, if there is one. Melodic articulation per-
tains to “note-wise” performance within a given voice –
how notes are to be connected, or broken up into smaller

2Other semantic objects can include bass-line, melody,
theme, and even – in the case of audio input – note.

groups, or are to have their own inner lives: how notes
become sounds. Anything that breaks up a homoge-
neous flow is an articulation. These are not merely
markers but are appreciated in themselves, and in how
they bring the whole to life.

The articulation problem includes the following com-
ponents:

1. Establish groupings (parts, wholes, sections, struc-
tures)

2. Establish dynamic (general assignments of loud/soft)

3. Establish articulation (manner of performance)

4. Establish relations between parts (e.g. synchroniza-
tions)

5. Make timbral assignments (choose samples)

6. Distinguish foreground and background. (general
levels, “automatic mastering”)

Some of these problems are not treated in this paper,
in particular the last. This would necessarily touch on
structural distinctions between melody and accompa-
niment, a problem we currently avoid by working with
polyphonic (as opposed to homophonic) music.

The general problem is to transform a pitch and onset
sequence into a sequence of samples. In this transfor-
mation we are moving from one conception of music,
which is note based, to another, which is sound-based,
from the discrete points of a notational system to the
continuum of perception. One “note” might now en-
compass a complex internal structure that is realized
by N samples, (potentially with large N). The notes
themselves do not provide sufficient information about
how to generate sound: to do that we must somehow
generate the information from within the music itself,
that is, analytically. This is the problem of generating
supplemental structure.

The typical sample library user has to key in every
change of articulation manually, a tedious labor. As the
number of available articulations increases, automation
is desirable. However, this is tantamount to the prob-
lem of creating an interpretation, a difficult problem not
yet addressed in the context of large multi-instrumental
sample libraries.

Structure

Nonlinear Structure
Consider a one-to-one mapping of pitch to intensity.
Every note of the same pitch maintains the same dy-
namic throughout a piece: for example bass soft, so-
prano loud. What’s wrong with this, e.g. as applied to
a Beethoven sonata? A set of predictable relations arise
which are independent of otherwise perceived musical
structure. Repeated notes will always have flat dynam-
ics, with no possibility of accenting in the Beethoven
manner. A new structure, the linear map from pitch to
dynamic, is introduced – and this structure is not, in
general, characteristic of music.



A historical example will help. The young Wagner
faced this problem in an overture that featured a for-
tissimo drumstroke on the second beat of every fourth
measure. The audience’s awareness turned into derision
and the composer was forced to flee (Wagner 1983).
There is such a thing in music as over-predictability,
and this certainly applies to a linear structure. There
is something anti-musical about it.

Wagner might have fixed his piece by making the
drum strokes a bit more irregular, playing with expec-
tations. He might have used an entropic solution simi-
lar to the “humanizers” of midi sequencers (which add
Gaussian noise). But the problem with the persistent
pattern is structural : a pattern that is “too simple” –
linear – should be fixed structurally, not statistically:
not adding noise, but adding structure.

But what then is a structure, and what makes some
structures musical? This is a rather subtle problem,
first, because it has no definitive solution: its judgment
is a matter of taste. At best, we can express a prin-
cipled articulation, where we claim that the staccatos
and legatos reference and articulate the musical units.

In a simplified version of the problem, we wish to
generate a bit vector B which we can use to repre-
sent legato/detaché. (In a rendering, this determines
whether to use a “legato” sample.) Now in some sense,
B should be synchronized with musical structures. One
might think of “phrasing,” but we need a finer grain of
articulation, since we would not ordinarily think it mu-
sical to perform phrases either all legato or staccato,
nor should each phrase necessarily follow a similar rule.
In fact we will need to query every note in the context
of the entire piece.

We call this approach structural magic: we begin by
taking some structural analysis of the piece, and re-
ducing its dimensionality to one bit per note, giving a
per-note oracle. Magic takes place if this conversion
does conserve structure. That is, we have somehow
drawn, as if by a magic spell, inscrutable qualities of
the whole into a per-note query mechanism that takes
the whole into account. All of this must take place in a
mathematical universe of course.

Patterns
The term “pattern” invokes looping music, and would
seem to be irrelevant for anything non-looping, but this
is not so: patterns are fundamental structures of all
music. Patterns refer to sequences of recurrences of any
feature of interest: we can speak e.g. of the pattern of
entries in a fugue, of the intensity of the downbeat, the
orientation of the melodic interval between two beats.
The property will take some value at different points in
the input score, and the sequence of values so obtained
is a pattern.

Some brief precision. A “pattern” is a fixed-length se-
quence of terms, and extensionally anything that such
a sequence can identify. The same term has the same
extensional identity. Terms are identifiers drawn from

the alphabet. A term must occur in the pattern more
than once. Things that occur just once are assigned
to •, read as “throw”: it is a place where the pattern
breaks or is “thrown.” Terms begin with A, and sub-
sequent new terms are alphabetically ascending. We
write ABA as A •A. When terms represent structures,
recurrences are taken as isomorphic, as a single object
with an expansion that places it in time.

PcN patterns
PcN s are defined as maximal temporally contiguous
collections of exactly N different pitch classes, from 1
(which includes all unisons and octaves) to 12 (trivially,
a whole piece that uses all 12 pcs). All PcN s can be
efficiently identified in a score. As shown in (Handel-
man and Sigler 2013), some PcN s uniquely determine
a key, and are useful for tonal analysis. But PcN s also
turn out to be extremely useful in creating structural
articulations.

PcN s can be normalized with Forte’s normalization
procedure (though we keep inversionally equivalent sets
separate). The set of normalized PcN s then corre-
sponds to all possible transpositions and orderings of
the underlying interval set. For example, Pc02 is the
set of all sets of wholetone steps in an input score.

Intuition: Sectional PcNPartitions
To gain an intuition, here is a simple example of what
PcN s can do: they can create sectional partitions in
complex pieces. This makes sense because different sec-
tions must technically realize difference with a restric-
tion of material, say of intervallic combinations, and
this is just what PcN scapture. In the Anna Magdalena
Bach Polonaise (Figure 1), Pc03, the minor 3rd stand-
ing on its own, occurs only in the odd sections, and
Pc047, the major triad, mostly in the even sections.
The overall formal pattern is clearly ABABA.
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Figure 1: PcN s reveal formal zoning in the Anna Mag-
dalena Bach Polonaise. Top shows occurrence of Pc03

and bottom shows Pc047.

Consider now an articulation. Using the imposed for-
mal pattern ABABA, we could choose one articulation
for A, another for B: e.g odd parts go to strings, even
to woodwinds. But this would give a rigid contrast.
Were we instead to assign instruments to particular
PcN s, randomly but consistently, then the structure
of the piece itself would determine how the instruments



group: the odd and even sections will automatically dif-
fer. But whereas in the formal pattern the articulation
groups are encapsulated, here bits of the sections over-
lap: imagine, for example a trumpet, with brief accents
in the odd sections, coming into its own in the even.
The result, structurally, is more complex than an or-
chestration entirely based on ABABA. No assertion is
made whether the result is esthetically more satisfying:
we regard that as an esthetic model, which we do not
provide.

Interval patterns
Let us now go into a bit more detail. As observed, Pc01

is the set of all sets of semitones in an input score. This
can act as a filter: we see the music only in one aspect.
What is left may nevertheless be highly structured.
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Figure 2: Half steps in a Finnish tune.

Figure 2 shows the half steps of a simple but inter-
esting Finnish tune. The sequential pattern of {0, 1} is
expanded in three different ways, labeled A, B, C. Each
box provides a sequence of pcs. Here A is (0, 0, 1, 0), B
is (0, 1, 0) and C is (1, 0, 0, 0).

What sort of structure can we discover in these se-
quences? We need to transform them further, e.g., by
alignment (the shaded entry suggests a translated sym-
metry):

0 0 1 0
0 1 0 0

1 0 0 0

This reflects something you can easily see in the
boxes: note f occurs progressively earlier relative to e,
which perhaps accounts for a subjective “phase shift”
quality in the tune. All this is merely to illustrate a
possibility for analyzing a sub-pattern that, through
the alignment, generates a new, perhaps more regular
pattern. This also illustrates what there is to do with
patterns: you can generate more patterns.

Figure 3 shows Pc03 and Pc02 as micromelodies in
the same tune. (bottom). The instances of Pc02 in-
volve different sets of notes, as well as showing a pat-
tern break – a unique shape at the phrase boundary,
created by the low note d.

Pattern superpositions
The patterns and structures so far represented were
taken one at a time, confined to PcN s, representing
underlying note sequences. These sequences (which al-
ways point back to notes in the input score) can be
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Figure 3: Top: 3rd as micromelody; pattern is ABAB.
Bottom: the second PcN reveals a unique shape at the
phrase boundary, created by the low note d; pattern is
A •A.

converted to other parameters: duration, say, or posi-
tion in measure, constructing a new term vector, which
will not necessarily match the first. We refer to such
transforms as parametric pattern maps. We can then
stack these up in a matrix of superpositions, and study
the way in which the terms line up.
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Figure 4: Superpositions of parametric pattern maps in
a German folk tune.

Fig. 4 shows this for two patterns in a German folk-
tune. The top system shows the PcN term pattern,
based on pitch. The bottom system uses the same
PcNboxes, but generates another pattern based on sets
of iois (inter-onset-intervals). The dotted boxes are
non-repeating terms, hapaxes.3

ABCABCD•ED•CD•E••B
• •A•BAC••C••C•B•••

The correspondence between the two vectors is clear:
they line up when pitch and ioi happen to be co-
occurrent. Pitch D always lines up with ioi C: pitch C
is a twice co-occurrent with ioi A, and once not, where
the ioi is longer than before. Co-occurrences might be
taken as more salient that those where pitch and ioi are
independent: the pattern can be “modeled” as stronger.
We moreover possess information about where and how
patterns are broken, a situation certainly advantageous
to the modeling of dynamic expectations (a topic out-
side our current scope). Here the question is how to
use this pattern as a supplemental structure for articu-
lation. If we were to construct a linear map of just the

3The term hapax, short for hapaxlegomenon, is borrowed
from linguistics, where it refers to a uniquely occurring
word.



top vector, then every each term would be transformed
in exactly the same way. The bottom vector informs us
of a subpattern in pitch C, namely AA•.

CCC
AA•

The first two pitch C’s could be articulated in the
same way, with an option to do something different to
the final C: it could be louder, for example. Seman-
tically, C is the long low note of a phrase ending: we
have captured a detail of a musical convention, how it
repeats and is varied.4

The correspondences between the two vectors are
nevertheless not perspicuous: some way of formaliz-
ing their relation is needed. To this end consider first-
order logic’s definition of the conditional: A =⇒ B
is true except when A is true and B is false. This
exactly captures the property of term pattern inclu-
sion: the top includes the bottom except where there
there is something on top and • below. The property
of inclusion—suggesting the traditional picture of struc-
tural hierarchies–might be linked to perceptual salience:
so the analysis of inclusions might help in trying to
model perceptual process. But this is not yet exactly
what we have.

Pattern subpositions
The general problem is that a score can generate many
term vectors and we would like to study their inclusion
relations. At the same time, we would like to test the
idea that inclusion patterns are in fact salient, and we
propose to investigate this by the construction of artic-
ulations. The claim is that while these articulations are
really sonifications of structure (as understood here) we
hope to find an overlap with a subjective evaluation of
musicality.

•AA
B•B
CC•

In the pattern above we cannot construct an inclusion
pattern without losing information: nothing is entirely
included in something else. (The poset does not have
single top node.) The best we can do is to take the
patterns one at a time, together with anything that
they include. The A pattern would now look like this:

AA
•B
C•

That is to say, we take the point of view of one pat-
tern and allow all inclusions from other patterns to filter
through. A typical set of inclusions is shown in Figure
5: a top pattern generates the columns, and each row
represents the inclusion pattern of a parametric trans-
form as seen through the lens of the top pattern.

4“Semantics” here refers to the interpretation of (for-
mally defined) structure in the conventional categories of
music theory.
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Figure 5: Superpositions of parametric pattern trans-
forms

Call this the subposition matrix, in which the prop-
erty is that we are allowed to ignore terms that don’t
fit the inclusion perspective of the top pattern. We
have two problems: to discover how to use a subposi-
tion matrix for articulations, and to assemble a picture
that uses all subpositions, or some interesting set of
subpositions such as a cover, where everything makes
some contribution – the totality of structure captured
speaks at once.

Artik Model
We now briefly describe the articulation algorithm, Ar-
tik.5

Among the problems of articulation are those than
can be meaningfully reduced to a yes/no decision:
should we construct a legato transition between these
two notes? Should we take the full value of this note
or shorten it? We can answer these kinds of questions
with a bit vector. Now consider what such a bit vec-
tor should look like, say for a Bach sonata: some parts
will be mostly legato, others mostly staccato, and oth-
ers will have close mixtures. A uniformly alternating
vector will not do, nor will uniform randomness help,
since differentiated higher-level groupings will be lack-
ing. The bit vector can in fact have the complexity
of music, since 1 = drum tap and 0 = no tap is suffi-
cient to produce drum solos with sections, transitions,
periods of growing complexity, etc. This observation
shows that the temporal, unfolding structure of music
can be (partially but usefully) encoded in a bit vec-
tor. We are in essence trying to create a 2D precis of a
high-dimensional object in such a way that aspects of
structure from the more complex object somehow find
their way into the binary structure. Now our problem is
merely how to generate one, given a subposition matrix.
How exactly do we regress pattern dimensionality?

Magic model for dynamics
One idea is to use magic. In a first reduction experi-
ment, we wanted to create a union sum for all subposi-
tion matrices, and tried to do so merely by counting the
number of occurrences of notes in each subvector. The

5The “k” is intended to be suggestive of G. Ligeti’s 1958
electronic composition Artikulation.



velocity of each note was then set to its count mod-
ulo N . The guess/intuition behind this was that the
the longest and most frequent patterns would make the
greatest contribution, creating a new “summary” struc-
ture, and this is just what seems to happen. A typical
result is shown in Figure 6. Each channel is count vs.
time, and was created by varying the count modulus.
The periodicities are roughly correlated and certainly
project a sense of organization. We can interpret these
numbers as midi velocities.

What does this do? The results can be quirky but
consistent: related structures are articulated in related
ways. In the works invstigated, results do not not nec-
essarily stand in any relation to prescribed dynamics:
sometimes they merely sound wrong. But often the
velocities, which generate spontaneous sectional con-
trasts, echo effects, crescendi, and patterns of accents,
seem surprisingly adjusted to the music.

Figure 6: 8 variations on a 2D structural reduction of
roughly 1/2 of Scarlatti Sonata K452. Values assigned
to each note are used oracularly where choices are avail-
able. Interpreting values as intensity leads to a quirky
yet “musical” performance.

Binary articulation model
Now we return to the problem of constructing a binary
representation of a single subposition matrix, attempt-
ing another approach. Again, we elect a fairly magical
approach in the following algorithm. Choose a matrix
that spans more or less an entire piece (in general one
can be constructed through a suitable choice of struc-
tures). Then, for each column, mark the first note in
each included subgroup. (We alternatively could mark
the ends, or both, or some other subset.) The magic is
that we cannot foretell what will happen. We applied
this to Vivaldi’s Tempesta di Mare, the opening of the
solo violin shown in Figure 7, where red=1, blue=0.
Note how the red/blue alternations in the second line
creates a “streaming” effect; a big group, in a sense
climactic, in the 4th and 5th lines, and a mixed articu-

lation for the scale-like passages.

Figure 7: Binary articulation of Vivaldi, Op. 8 No. 5,
“Tempesta di Mare.”

Articulating polyphony
Given that we have a method for articulating a single
voice, the problem is how to migrate articulations to
other voices. In the 3rd Brandenburg, scored for 3 vio-
lins, 3 viole, and 3 celli with contrabass continuo, vir-
tually all combinations of unison/octave playing arise.
And obviously it is interesting for the unisons to be
articulated in the same way, as they are in orchestral
string sections, where the bowing is to be in concert.

One solution was simply to force each voice to as-
sume the matrix given by whatever structures a previ-
ous voice used, and the articulation vector is otherwise
constructed without reference to the concerted effect.
For the Brandenburg, the desired concert effect was
achieved, with the included benefit that the themes all
group into their own articulations. The opening theme,
repeated at the end, comes out with identical dynamics
and articulation. The many variants of the theme, on
the other hand, form subgroups with distinct identities.

Results
Some provisional but suggestive results are presented at
www.computingmusic.com. The problem was to trans-
form midi directly into samples that offer articulations
and a general sense of performance realism. The midi
files used were left uncorrected, with velocity and vol-
ume information ignored. Specialized software was used
to render the samples, so that we were fully in control,
modulo the stochastic qualities of the samples them-
selves.

One obvious difficulty is the narrowness of the dy-
namic range, a consequence of sample normalization
and the difficulty of deciding on appropriate amplitude
for different attack styles (pp, ff, etc.). Otherwise the
interpretations seem at least half-valid: sometimes they
spontaneously follow score indications, as in the Bran-
denburg, whose opening is f, with contrasting sections,
marked p, played in an appropriately sweet legato man-
ner. There are certain stumbles: the sections with puls-
ing tones and the repeated arpeggiated tune (see Fig-
ure 9, mes. 92) invert the usual foregrounding of the



tune and backgrounding of the throbbing pulse. But
the result is not without charm, creating eerie Bernard
Hermann-like suspense. The absence of rules (about
how to articulate music) proves to be advantgeous in
creating different points of view, expanding the inter-
pretive possibilities. One example occurs in mes. 87-
90, a climactic moment in the piece. The algorithm
produced an unconventional but musically interesting
articulation that adds a new rhythmic level, shown in
Figure 9, bottom. The fruitfulness of the concept of ar-
ticulation as the generation of supplemental structures
is clear.

Since we distinguish between structure and model,
assignments to velocity are arbitrary. Hence we can
construct alternative models of the articulation vector
that include inverses, where loud and soft are inverted:
since no constraints are placed on what can be loud and
soft, the inverse model ought to be just as valid. The in-
verse articulation (of staccato/legato) is also presented
on the website. Readers can judge whether the effort
was worthwhile by comparing these with a randomly
articulated Brandenburg, which also has its own mer-
its. In all cases, the same (Artik-generated) dynamic
set was used.

But why does the algorithm work at all? At present,
we don’t know. Thus, we meet a criterion of the
“Lovelace Test,” which takes the lack of an explana-
tion for the causal properties of a generative algorithm
to be an indication of “intelligence” (Bringsjord, Bello,
and Ferrucci 2001). We can of course continue to exper-
iment with more “rational approaches,” through which
we might better understand the present algorithm. In
the worst case scenario, we must declare the algorithm
to be “magic”: usable, but theoretically opaque.

Conclusions

We have touched on many matters and questions very
briefly. Here we will briefly expand some selected few.

Cantabile model
Articulation is viewed here as an open space, subject
to nothing more than structural constraints. One area
where this does not seem quite plausible is the lyrical
“singing” style. There is undoubtedly linguistic influ-
ence and overlap, together with primary vocalization,
supplying characteristic traces or schemas of different
emotions. But all of this is essentially semantics.

Certainly a basic element of lyricism is the sung
sound, which is rather different from a simple “note”. It
occupies a vocal range, a continuous space, is not char-
acteristically steady-state, and, perhaps, has character-
istic kinds of duration – expressive longs and speech-
like shorts, or at least shorts with tightly differentiated
rhythms. Beyond this there seems little to assume. Un-
der which circumstances ought material so flagged to be
brought out?

What is the main voice in an ensemble? We cannot
know, just because there are probably multiple equally

Figure 8: Red/1 might stand for legato, blue/0 for stac-
cato: legato implies a connection with the next note.
The distribution creates many new groupings and the
patterns tends to shift with the music: notice, e.g., the
red/blue reversal in mes. 6 corresponding to the “bario-
lage” crossover, reversing the orientation of the interval
that is taken legato. A charming effect?

Figure 9: Music at the center of the Brandenburgian
labyrinth: the ensemble breaks out into a riotous de-
scending passage with mostly new material. (Only the
1st violin is shown: violins and violas play rhythmi-
cally unison, while the bass walks downwards.) The al-
gorithm has produced a fresh “rhythmic” articulation
that stands in interesting contrast to the conventions
usually observed in performance. In doing so it has
created a supplemental structure.

valid ways of carrying out voicing. We can however
arbitrarily select a structure of the kind deployed here
that results in certain things foregrounding in patterned
ways by virtue of structural criteria. This amounts to
composing a solution: there is perhaps no other way,
since the question of foreground and background, since
Schoenberg at least, is one that composers designate
through acts of composition, rather than by naturalistic
or computable “robust” criteria. Whether this applies
to cantabile, which does seem “naturalistic,” remains
to be seen.

Articulation spaces
There is a tendency in musical AI research to think
of a generative program as something that is like a
composer who produces individual compositions. This
is the legacy of the Turing Test, in which computers
must simulate individuals. Programs, however, gener-
ate spaces. In order to seem like individuals, methods
have to be devised to select “the best,” a criterion that
may make sense when the game is Jeopardy, but not
music, where it can only devolve on taste or “likes.”



With Artik, we would have to ask: is there a a vec-
tor that captures as much structure as possible? The
question seems incoherent. In our thinking, the most
structure is always given by repetition. Obviously this
is not what we want.

It seems instead interesting to consider the gener-
ated structural space as a mathematical and musical
object in its own right. Consider the possibility of mov-
ing from one point in this space to another: the result
would be like turning a knob to get a different inter-
pretation of the same music. The space could be one
of orchestrations, but also plausibly of variations. The
question of which is “best” reduces to an expression
of human interest. A user spins a wheel and trans-
forms a pop song into an orchestral fantasy. A re-
searcher might wish to explore a specific subspace by
constraining the pattern space. The computational es-
thetician will want to try correlating structure to es-
thetic states. An avant-gardist will demand access to
the meta-space from which a whole new concept of pat-
tern might emerge. These are the sorts of possibilities
that arise when we reject the idea that computers must
be individuals, rather than spaces. The results should
be programs that are usable, not merely postulations
(worse: hypostatizations) of “expressiveness.”

But the problem does not completely go away. In
order to be usable, a music-transforming program must
somehow or other stay within the world of music in a
sense that is difficult to make precise. A tonal com-
position that is transformed into an atonal piece has
lost a certain kind of significant structure. The “musi-
cal sense” of Happy Birthday is lost when played back-
wards (Jackendoff 1994). Can we partition the artic-
ulation space so as to favor “music-preserving” struc-
tures? Might we, for example, constrain a space so that
each of its points is theorized as belonging to a specific
corpus—say, the solo violin music of J. S. Bach, or a cer-
tain flavor of EDM? The problem might be cast entirely
structurally, in which case progress might be made.

But at any rate it seems likely that cultural identity
of music will shift from the older emphasis on individual
“masterworks” to the constructive space of possibilities.
This follows from the way technology is likely to influ-
ence the practice of music, through increased partici-
pation and openness in everything that pertains to the
knowledge and practice of music. In this kind of world
works created are likely to forfeit the individuation of
music in structurally frozen things, instead taking on
a presence as a world, an environment: Eco’s theoriza-
tion of the “open work” (Eco 1989) – itself derived from
Boulez and others – is applicable. Music might come
to be understood as a kind of living space inhabited,
rather than consumed, in constant flux, making good
Wagner’s precept of “music as the art of transition.”

Structure and Semantics
Making music is widely conceived as creating esthetics,
beauty and meanings, and this is what AI must some-
how grasp: research presently faces a semantic barrier.

The question is: can we capture experience – musical
meaning – through structure? We put the question in-
versely: can we generate meaning through structure?
Supposing we can (however you regard our results). In
that case we might say: the semantics is that particular
structure. But then we would want to know how that
structure generalizes, while preserving whatever aspects
were relevant for human semantics. It might be possi-
ble to come up in this way with a descriptive space of
musical semantics, coded as structure, rather than as
non-computational labels. It is conceivable that musi-
cal structure, standing in unique relation to semantics,
might offer basic clues to the general problem of coding
human experience: music as a foundational science of
semantics.
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