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Abstract

We describe work in progress on the development of a
new hierarchical model of machine creativity operating
in the domain of music. Similar to the way human brains
work, our system separates low-level components as-
sociated with pattern recognition and analysis from the
high-level creative components in two extensible layers.
Separating this functionality in different layers of our
system provides better visibility into the behavior of the
creative component. This increased visibility has led to
many improvements over previous iterations including
the reward calculation for the creative component. Ad-
ditionally, the design of an abstract input feature layer
allows for greater flexibility in the number and combi-
nation of low-level features that can be used within our
system.

Introduction
After working with previous system designs, such as those
described in (Smith and Garnett 2012), we decided it might
be useful to try to separate out the different evaluative com-
ponents of the system. We therefore divided our system into
a set of low-level perception and short-term memory compo-
nents, and a high-level component that would focus on “cre-
ative” choice or novelty. In this way, our system separates
the part of our system involved in making the most coherent
choice, in terms of matching what has come before, from the
part designed to make the most interesting choice. This strat-
egy of encapsulation allows us to a) better refine the reward
calculation for our creative component, b) better understand
the nature of the choices made by the system, and c) allows
for the easy addition of musical feature components through
a uniform programming interface without adversely affect-
ing the component concerned with creativity.

Motivation
Elementary rules and theories of musical coherence are
well-known, but musical creativity is less well understood.
Creativity, including musical creativity, can be a nebulous
concept. And, seeking a computational model of creativity
given its implicitly unpredictable nature may seem quixotic,
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or even impossible. For our purposes, we begin with a very
general definition of creativity from (Vartanian, Bristol, and
Kaufman 2013); they suggest that creativity is “the genera-
tion of novel and useful products in a specific context.” Fur-
ther, following (Boden 2004), we would like to distinguish
between historical creativity, which has a broad cultural and
social context, and psychological creativity, which is cre-
ative within the context of an individual’s experience. Our
focus here is on the psychological.

As a specific starting point, we take Schmidhuber’s the-
ory of creativity (Schmidhuber 2010) that derives from no-
tions of fun and interesting-ness a computational model of
creativity. First, we take from his theory the intuition that
producing a creative artifact requires being able to imagine
experiencing it first. But this is not simply shaking marbles
in a bag. Combinatorial creativity, as described by (Boden
2004), still requires that the combined ideas come together
in an intelligible way—this is what makes them “useful in
a specific context.” In Schmidhuber, the imagination serves
as a creator of prototypes for the artist to choose from and
explore. While the raw materials may already be known, or
at least are familiar, the artist’s exploration of their relation-
ships and/or transformations will often lead to the discovery
of a configuration that is unfamiliar, yet resonant with previ-
ous material. This discovery, potentially at both the moment
of creation and at the moment of audition, is initially quite
exciting and may bring the artist a great deal of pleasure. But
as the exploration continues, and the artist or auditor is able
to understand the new discovery better, familiarity will lead
to decreasing interest which will ultimately push the artist to
move on to new territory and, if unchecked, lead the auditor
to boredom.

Second, Schmidhuber’s computational model of creativ-
ity includes a reinforcement learner that attempts to maxi-
mize the rate of change in its internal world model. The less
change required to represent the world, the more compressed
the representation is—the more it tends toward abstraction.
We find his notion of information compression for a creative
agent is also relevant in the domain of music. To account for
aspects of music perception many of the formalisms of mu-
sic are centered around compressing high-dimensional in-
formation both horizontally (in terms of melodic patterning)
and vertically (where groups of notes that sound simultane-
ously are often described according to their relative relation-
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ships, their harmonic/contrapuntal function). Indeed, manip-
ulating abstractions and applying them to different contexts
is another mode of creative behavior. With these similarities
in mind, we seek to leverage neural models and Schmidhu-
ber’s computational ideas in our current work.

Related Work
Since our aim is to realize an autonomous creative agent in
an online unsupervised machine learning implementation,
we therefore require a method of classification to manage
our problem space that is both efficient and simple to an-
alyze. While others have used suffix trees (Pachet 2003),
genetic algorithms (Biles 2002), and support vector ma-
chine algorithms (Le Groux 2011), we have selected a neural
network model known as fuzzy adaptive resonance theory
(ART) (Carpenter, Grossberg, and Rosen 1991). The ART
model is very efficient and can both train and run in real
time. It can be trained one example at a time and its simple
architecture allows for a clear understanding of its decisions
and, perhaps more importantly, an easily computable met-
ric of the current state of its learning. An ART learns pro-
gressively by adding new knowledge—additional network
‘nodes’—when it is unable to at least minimally match an
input pattern to one of its internal patterns. When the ART
is able to match an input pattern to an internal pattern, the
matching elements of the internal representation are held
constant while elements not found in the input are decreased.
Thus, an unsupervised ART a) is able to encode new in-
formation, b) can progressively refine its internal represen-
tation, and c) is resistant to losing information. These at-
tributes make it an excellent choice for the implementation
of a creative agent.

Additionally, since our pursuit is a musical one, our sys-
tem derives ideas from many previous implementations in
that domain. Computer-assisted algorithmic music compo-
sition can be traced back to the first experiments by Hiller,
et al. in 1958 (Hiller and Beauchamp 1965). However, sys-
tems like ours that attempt to model creative impulses, as
opposed to modeling rules or generative structures, are rela-
tively recent. Still, many examples exist from which to draw
inspiration. For example, Pachet’s use of multiple musical
viewpoints from (Conklin and Witten 1995) in his Continu-
ator system (Pachet 2003) can be seen as a precedent for the
separation of our system’s analytical components into a dif-
ferent layer from the creative creative component. And sim-
ilar to Biles’ GenJam (Biles 2002), our system seeks to exert
some measure of control over the ratio of novelty to same-
ness. Like (Mozer 1994; Eck and Schmidhuber 2002), our
system does “note-by-note” generation. Since we are con-
cerned to model creativity rather than more general musical
constructs, we focus here exclusively on melodic generation
since that simplifies the models and makes it easier to judge
results. We have also made extensive use of concepts from
(Smith and Garnett 2012).

Architecture
In order to clearly separate perceptual from creative compo-
nents, our system has two distinct layers. The bottom layer,

called the feature component layer, is made up of compo-
nents designed to define and remember features. The top
layer, the creative layer, chooses the most interesting pitch.

Similar to (Smith and Garnett 2012), we started with a
configuration wherein each component contributed a mea-
sure of its preference to an overall reward calculation. How-
ever, comparing the internal representations of the lower
level components revealed relatively large differences in
their distributions and corresponding large differences in the
reward contribution. When the internal representations of
the various feature components were substantially different,
their contributions to the reward were incommensurate.

In the new implementation, each component of the fea-
ture layer independently provides a candidate pitch to the
creative layer based on its independent representation, rather
than contributing to the reward score. The candidate pitch is
the one receiving the highest reward (i.e., the best choice for
that component). This allows the calculation of each feature
component’s reward to be independent of the rest of the sys-
tem, and to use any measure of goodness of fit that works
best for a particular feature. The feature components’ candi-
date pitches are passed to the creative layer.

As in (Smith and Garnett 2012), and following (Schmid-
huber 2010), we take the amount of change in the internal
representation of the creative layer as a measure of how
much the system is learning. This is derived from Schmid-
huber’s theory that postulates that an improvement in a sys-
tem’s ability to compress its world model is an indication of
its learning or assimilating a new concept and in turn serves
as an impetus for further exploration (Schmidhuber 2010).
In our case, we assume that if an ART node’s weights are
changing substantially, that implies it is still learning. If the
node is still learning, that implies that it is still exploring,
still creating something new. Therefore, for each candidate
pitch proposed by the lower layer, we calculate the change
in internal weights that pitch would induce in the creative
layer’s ART nodes. We call this change in a node’s weights
δW .

This reward based on δW is calculated for each of the fea-
ture layer’s candidate pitches. Once the pitch generating the
highest δW is determined, it is selected as the new pitch.
This selected pitch must now be learned by all the mod-
ules. Thus, it is presented to the lower feature layer so that
each component can update their independent world models
to accommodate what the upper layer has selected. This is
shown schematically in Fig. 1 where the input, representing
the currently selected pitch, is presented to each of the fea-
tures components, which each then propose a new pitch to
the creative layer, the ‘Composer.’ Once the composer has
selected a new pitch, it is sent to the output and back around
to the input to continue the process.

Feature Component Layer
The feature component layer is designed to accommodate a
variety of representations of the system’s inputs and serve
as a filter ensuring the creative layer is presented with a
meaningfully coherent set of pitches from which to make its
choice. Extensible in design, each component on this layer
is responsible for 1) keeping track of its own representation
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Figure 1: High-level architecture

of the world, 2) incorporating new inputs into that represen-
tation, and 3) making a choice of the next note that most
closely aligns with its representation. The mechanisms by
which it performs these tasks are left up to each component
allowing for a great deal of flexibility in how components
are designed. The autonomy of each component additionally
negates the need for these components to be comparable. We
are currently experimenting using three feature components:
pitch (P), which captures recent pitch activity and nominates
a pitch based on its ability to match its memory of recent
pitches; melodic interval (INT), which measures the inter-
val from one pitch to the next and nominates a new pitch
based on how well the interval it makes with the previous
pitch matches remembered intervals; and, melodic continu-
ity (MC), which serves as a melodic continuity detector as
explained further below. In order to better observe and un-
derstand our creative component, we are not currently ex-
plicitly modeling rhythm or simultaneity; the system gen-
erates a single note at each time step. Importantly, we do
encode memory in a fundamental way, described next.

Pitch and Melodic Interval Both the P and INT compo-
nents are comprised of: a short-term memory unit (STM); a
classifying long-term memory, an ART; and a decision pro-
cess. When asked to supply a candidate pitch to the creative
layer, each component in the feature component layer eval-
uates each possible next note. The STM for both of these
components is based on a continuously running spatial en-
coding approach that both allows them to keep track of the
set of most recent events as well as their order in time by ap-
plying decay as each new event arrives (Gjerdingen 1990).
The only differences between the P and INT components
lie in the space and makeup of the features they are rep-
resenting. In the case of P, incoming semitone pitches are
represented locally, as a set of weights associated with inte-
ger values from 0− 11, see Fig. 2. For INT, signed melodic
intervals are encoded in semitone units directly into a vec-
tor containing 23 weights associated with integers spanning
−11 to +11 (e.g., an ascending whole step is encoded as
+2, a descending fourth as −5, etc.). As each new event is
processed, the STM’s weights are decayed in a manner con-
sistent with short-term auditory memory, on the order of ∼5
seconds (Le Groux 2012).

The long-term memory for P and INT is taken care of by
an implementation of fuzzy adaptive resonance theory, an

Figure 2: Example encoding of simple melody

ART. The internal representation of the ART is a dynamic
set of nodes with the same dimension as that of the STM.
The ART calculates a winner determined by a reward score
(R) based on the fuzzy match between each of its nodes and
its STM. In (Smith and Garnett 2012) the total R for each
proposed pitch was further modified by the amount of learn-
ing required to represent it. In the present model, the P and
INT components simply calculate R based on the best match
according to their memory of previous pitches and intervals.
That is, they focus on making the most coherent choice,
leaving the creative decision to the creative layer. A ‘vigi-
lance’ check, as in (Carpenter, Grossberg, and Rosen 1991),
is in place to ensure that a chosen node’s weights represent
the STM to a reasonable degree. A higher vigilance thresh-
old will produce output that is more reflective of the STM,
whereas lower vigilance will allow for matches with nodes
that are less similar to the STM. Importantly, this allows for
longer term memory, and hence longer term unfolding of re-
lationships. Once the P or INT component has calculated R
for each possible pitch, it chooses the pitch with the best R.
To repeat, the components at this feature level do not try to
be creative, they are solely concerned with finding the best
match according to their individual criteria. Each compo-
nent then sends its candidate pitch to the creative layer. See
(Carpenter, Grossberg, and Rosen 1991) for details of the
matching, vigilance and the learning algorithm.

Melodic Continuation The goal of MC is to provide
the system with the ability to choose pitches that enhance
melodic continuity, as opposed to the pitch or interval conti-
nuity of the other modules. Our default uses semitone con-
tinuity, but later we show an example of a more diatonic
model. While P chooses pitches that best fit remembered
pitch patterns, and INT chooses pitches that best fit remem-
bered interval patterns, MC chooses pitches close to, but
not the same as pitches that have already been chosen. That
is, it will tend to prefer neighbor notes to previously heard
pitches. MC is simpler in structure than P and INT in that
it only uses a single structure to encode and make its pre-
dictions. Long term memory is inherent in its design since
a given pitch will remain in memory indefinitely until it is
‘cancelled’ by a neighbor note—it remembers edge pitches.
Pitches are encoded using a local representation in MC, but
then pitches above and below the current input pitch, n, are
decayed exponentially

wnew
n±s = dwold

n±s (1)

where s is the number of steps we are considering to be
in proximity, and d is the decay factor. After encoding the
probe pitch, the reward for the current test pitch is calculated
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as:

Rn =

∑D
i=1 w

old
i∑D

i=1 w
new
i

(2)

where D is the size of the vector MC is encoding and w rep-
resents all the weights of MC before and after the encoding.
This leads to a score that is always greater than or equal to
1 due to the way in which the inputs are encoded. Using this
calculation, MC nominates the pitch that provides the best
continuity to previous inputs.

Creative Layer
Structurally, the creative layer has a lot in common with both
the P and INT feature components. However, there are some
differences between the ART in this layer and those in the
lower layer. First, the reward calculation is quite different. It
is not trying to make the closest match to previous inputs,
like the feature layer components, rather it is trying to make
an interesting choice. To that end, the creative layer’s reward
is calculated using how much change in the ART’s weights
a chosen pitch might cause. By itself, this process would
lead to the ART always selecting new material. But in this
case, this does not happen due to our hierarchical structure
because only the coherent pitches approved by the low-level
feature classifiers are available. This is accomplished using
the calculation:

δW =

D∑
i=1

wold
i − wnew

i (3)

Previously, δW was used as a gate with its value being
compared against a threshold. Using δW in this way sig-
naled when a significant change had taken place in a node.
(Smith and Garnett 2012) also incorporated the sum of the
number of nodes created in each ART of their hierarchy in
their reward calculation. We removed the node counting fac-
tor of the calculation since our current way of calculating
δW automatically gives a high reward for new nodes which
allows for a more direct understanding of the learning be-
havior of the creative ART.

When using δW in the reward calculation, it is helpful to
be able to balance the high reward the creative component
receives for making the most novel choice (the one causing
the most change in a node) against the rewards it receives for
making choices that reflect something it has already learned.
To give us a means to experiment with different levels of
novelty tolerance, we apply a Wundt curve to the δW factor
before it is used in the reward. This allows us to select an
adventurous or more conservative composer at will.

Thus, the current model gathers the reward functionality
concerned with interesting-ness into one high-level unit, our
creative layer. This allows the feature layers to focus on pat-
tern matching and proposing candidate events that best fit
their individual criteria and leaves the creative functions uni-
fied in one top level component.

After calculating δW , the creative layer’s ART also uses
a vigilance test to trigger the creation of a new node when
it fails to find a node that is minimally able to represent a
change to its world model. In this way, it is ensured that the

creative layer’s ART has an accurate representation of its
input.

Once all the candidate pitches have been processed by the
ART and a winner is determined, that winner is presented
to all the members of the feature component layer. Each of
these components is, in turn, responsible for incorporating
that winner into its long term memory and world model. In
the case of the P and INT components, this means updat-
ing each STM and ART node weights, adding new nodes as
necessary. For MC, it encodes its inputs as before, but in a
final step applies an urgency factor (U) to the entire set of
its weights, pushing them asymptotically toward 1 as long
as they have no neighbors. This imbues MC with a greater
need to return to those pitches over time and, in the long
run, prevents wild divergences in the melodic shape of the
system’s output.

Results
While it cannot really be described as exciting, the perfor-
mance under this architecture produces output that is both
sensible, in that the output can be seen to derive from the
mechanics in place and the small seed it is given, as well
as controllable, for the general effects of changing various
parameters can be predicted, even though particular solu-
tions are novel. Figure 3 shows output reflecting representa-
tive behavior under the following nominal settings. For the
feature component layer, the P and INT components each
had an STM with an exponential decay rate of 0.8 and each
ART had a learning rate of 0.4 and a vigilance threshold of
0.5. The MC component had an exponential decay rate of
0.0, applied to pitches one semitone removed from its in-
put and an urgency factor (U) of 0.1. On the creative layer
the STM also had an exponential decay rate of 0.8, and the
ART had a learning rate of 0.4, and a slightly lower vigilance
threshold of 0.4.To facilitate understanding of the creativity
component, tests were framed within a limited set of pitches
encompassing only a single octave using a relatively small
seed of three pitches, C#-D#-G, shown below in hollow note
heads.

Figure 3: Output of system, nominal settings

In Figure 3, we examine the output of the system with
these nominal settings. The effects of MC can be seen right
from the top in this case: the D it nominates clearly shows
its predilection to connect to the C# and D# from the seed.
MC’s influence can also be observed in the neighboring
semitones chosen later in the excerpt at bar 2, beat 2 and
bar 4, beat 1. The INT component’s contribution to the out-
put is most easily seen for the 3 beats beginning at bar 2,
beat 3. The M3, M2, M3 sequence is entirely derived from
the intervals introduced in the seed. P’s effect is the hard-
est to uncover in this short passage. The introduction of new
pitches on the first two beats has forced P’s ART to expand,
creating a new node in order to provide minimally useful
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candidates to the upper layer. Thus, P nominates the D from
1:1 and the last pitch of the seed (G) while the first two notes
from the seed do not appear as candidates.

Figure 4: Output of system, P’s vigilance raised

In Figure 4, the vigilance for P’s ART is raised to 0.8 to
see if encouraging it to remain truer to the seed has an effect
on output. This results in changed output due to P no longer
nominating the D from 1:1. The result includes a repetitive G
from the seed. Additionally, the C# and D# are not discarded
in this case and are nominated several times over the course
of the next few bars.

Figure 5: Output of system, expanded MC influence

To observe the manner in which MC connects the pitches
it has previously encoded, we expand the range of neighbor-
ing pitches upon which it acts. This is accomplished through
increasing the value of s in Eq. 1 from 1 to 2. Gone are the
semitones, replaced by whole-step motion. (see Fig. 5).

Figure 6: Output of system, C’s vigilance raised

Even though C’s rewards are based off of a different cal-
culation, we performed some experiments to better under-
stand the importance of vigilance on the creative layer. It is
possible to observe the equivalent effect of manipulating the
vigilance of C’s ART, whether it is increased (see Fig. 6), or
decreased (see Fig. 7).

Figure 7: Output of system, C’s vigilance lowered

Future Directions
The current performance of the creative component is en-
couraging. However, a couple of enhancements could poten-
tially be pursued. Experiments seemed to reveal that some
of the ART parameter tuning may be automated. Automat-
ically calculating optimal values for parameters such as the
low δW threshold or those associated with the Wundt func-
tion would allow the system to work in arbitrary musical
contexts. Further experiments with a greater range of in-
put features, most noticeably rhythm, as well as a more so-
phisticated means of evaluation would be required to fully

evaluate this and are also needed to provide more context to
the system. The flexibility builtin to the architecture allows
for quick prototyping of new potential feature components
as well as testing combinations of different features. Thus,
quick evaluation of new input feature configurations incor-
porating concepts from the disciplines of neurocognition and
psychology may be seamlessly commingled in this system.
Given our current success at a relatively low level, it would
also be exciting to extend our system to include a musically
higher context. Whether that involves simply creating stacks
of our current creative component or incorporating it into a
different architecture, we have a solid foundation on which
to build.
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