
Using the Creative Process for Sound Design
Based on Generic Sound Forms

Guerino Mazzola, Florian Thalmann
School of Music, University of Minnesota

2106 Fourth Street South
Minneapolis, MN 55455

Abstract

Building on recent research in musical creativity and the
composition process, this paper presents a specific prac-
tical application of our theory and software to sound
design. The BigBang rubette module that brings gestu-
ral music composition methods to the Rubato Composer
software was recently generalized in order to work with
any kinds of musical and non-musical objects. Here, we
focus on time-independent sound objects to illustrate
several levels of metacreativity. On the one hand, we
show a sample process of designing the sound objects
themselves by defining appropriate datatypes, which
can be done at runtime. On the other hand, we demon-
strate how the creative process itself, recorded by the
software once the composer starts working with these
sound objects, can be used for both improvisation with
and automation of any defined operations and transfor-
mations.

Keywords Rubato Composer, Synthesis, Sound Design,
Creativity.

Introduction
Musical creativity in composition is a complex activity span-
ning from symbolic shaping of score symbols to the de-
sign of interesting sounds. The latter poses many problems
when it comes to an intuitive understanding of the ways
sound waves can be produced and combined. Particularly
with methods such as frequency or ring modulation, it is dif-
ficult for a composer to see associations between structural
aspects and the resulting sound (Dahlstedt 2007, p. 88). Fur-
thermore, interfaces commonly used for sound design are
typically close to the physical reality of sound production,
such as the typical interface of a modular synthesizer with
knobs, buttons and patch cords, and lack aspects of spacial
imagination crucial for the understanding of complex struc-
tures.

A variety of approaches have been suggested that en-
able sound designers to overcome some of these obstacles
without having to acquire a background in acoustics, sig-
nal processing, or computer programming. Systems that en-
able parameter randomization, for instance, can lead to dis-

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

coveries by chance, but they can then not be further pro-
cessed without knowledge of technical details. Evolution-
ary systems, alternatively, can be helpful by allowing com-
posers to automatically generate new sounds based on se-
lected parental sounds and thus judge on a purely aesthetic
level (Dahlstedt 2007). However, the processes behind such
generation are typically hidden and the outcome difficult to
understand. The same is true for artificial intelligence and
learning system approaches that have also been proposed,
such as in (Miranda 1995).

In this paper we illustrate how the creative process of
sound design itself can be used for sound design. We start
out by briefly summarizing our recent research on and model
of the creative process. Then, after a short introduction to
the principles of the BigBang rubette module, we discuss
the characteristic problems of sound design and show how
solutions can be found with our software. These solutions
illustrate how metacreativity can take place on several lev-
els of both synchronic and diachronic nature. This will lead
us to a solution which unites all common synthesis methods
and can still be used in the same intuitive way. Finally, we
explain how our current version of BigBang enables com-
posers to retrospectively use their own creative design pro-
cess to reshape the result they arrived at and find neighboring
sounds in the sense of Boulezian analyse créatrice.

The Creativity Process Scheme
The theoretical model of the creative process on which the
discussions in this paper are based consists in a semiotic ap-
proach. It was first described in (Mazzola, Park, and Thal-
mann 2011) and later applied in (Mazzola and Park 2012;
Andreatta et al. 2013) and consists in a sequence of seven
steps that can be summarized as follows:

1. Exhibiting the open question

2. Identifying the semiotic context

3. Finding the question’s critical sign or concept in the semi-
otic context

4. Identifying the concept’s walls

5. Opening the walls

6. Displaying extended wall perspectives

7. Evaluating the extended walls

Musical Metacreation: Papers from the 2013 AIIDE Workshop (WS-13-22)

75



In this model, creativity implies finding a solution to the
open question stated in the initial step, and which must be
proven to be viable in the last step. The contextual condi-
tion guarantees that creativity is not performed in an empty
space. It is not a formal procedure as suggested by other
scholars, such as David Cope (Cope 2005), but generates
new signs with respect to a given meaningful universe of
signs. The critical action here is the identification of the crit-
ical sign’s “walls”, its boundaries which define the famous
“box”, which creativity would open and extend.

The model has been applied to many general exam-
ples (Mazzola, Park, and Thalmann 2011), such as Einstein’s
annus mirabilis 1905 when he created the special relativity
theory, or Spencer Silvers discovery of 3Ms ingenuous Post-
It in 1968. Relating more specifically to musical creativity
in composition, the authors discussed the creative architec-
ture of Ludwig van Beethoven’s six variations in the third
movement of op. 109 in the light of our model, our analysis
being confirmed by Jürgen Uhde’s (Uhde 1974) and William
Kinderman’s (Kinderman 2003) prestigious analyses of op.
109, as well as the creative analysis of Pierre Boulez’s struc-
tures pour piano I, a computer-aided creative reconstruction
of that composition in the sense of Jean-Jacques Nattiez’s
paradigmatic theme (Nattiez 1975) and of what Boulez calls
analyse créatrice in (Boulez 1989), starting from György
Ligeti’s famous analysis (Ligeti 1958).

Walls in Sound Design
The creative process plays several roles in the context of this
paper. Most importantly, the software presented later builds
on recording each step in a more abstract way and giving the
composers access to refine their decisions at a later stage.
However, it can be found on other (meta-)compositional lev-
els such as the process of defining sound object types before
composing, and even on the level of finding a new solution
for sound design. The latter will be discussed here as an ex-
ample.

In the light of this model, the common problems of sound
design stated in the introduction can be identified to con-
sist in multiple “walls”. First, formulas describing sounds
are anything but intuitive and can typically not be handled
by the mathematically non-trained composer. Second, inter-
faces are usually modeled on the physical process of sound
synthesis and may thus seem unintuitive and laborious to
manipulate. Third, sound manipulation usually consists in
manually altering single parameters sequentially, or simul-
taneously altering several parameters in a discrete and un-
controllable automated way. Fourth, there are very different
ways of creating formulas and generally no unified presen-
tation of Fourier, FM, wavelet synthesis is given. This dou-
ble wall is conceptual and representational: the correspond-
ing (double) open question could be formulated as follows:
Can we design a generic formula for basic methods of sound
design and represent its instances in a way that allows for
intuitive, continuous, and accessible interaction? The fol-
lowing sections lead to solutions that can be achieved using
the denotator formalism implemented in the music software
Rubato Composer. To prove their viability they will be eval-
uated in practice with examples generated in BigBang.

Denotators, Rubato Composer, and BigBang
Rubato Composer, a Java software environment and frame-
work (Milmeister 2009), is based on recent achievements in
mathematical music theory, which includes the versatile for-
malism of forms and denotators that roughly corresponds
to the formalism of classes and objects in object-oriented
programming but is realized in a purely mathematical way
based on topos theory. Forms are generalized mathematical
spaces commonly based on the category of modules Mod@

and created using several logical-structural types including
Limit (product), Colimit (coproduct), Power (powerset).
The basic spaces, corresponding to primitive datatypes, are
referred to as Simple. Denotators, instances of these forms,
can be seen as points in the corresponding spaces. They are
the basic data type used for the representation of musical as
well as non-musical objects in Rubato Composer. Rubette
modules in the software typically operate on them by ap-
plying transformations, so-called morphisms, or evaluating
them using address changes. For details, refer to (Mazzola
2002; Milmeister 2009).

The BigBang rubette module (Thalmann and Mazzola
2008; 2010; Mazzola and Thalmann 2011) applies insights
from transformational theory (Lewin 19872007; Mazzola
and Andreatta 2006), music informatics, and cognitive em-
bodiment science (Mazzola, Lubet, and Novellis 2012) by
implementing a system of communication between the three
musico-ontological levels of embodiment (facts, processes,
and gestures) (Thalmann and Mazzola 2011). Traditionally,
a composition is seen as a definite fact, a static result of the
composition process. In BigBang it is reinterpreted as a dy-
namic process consisting of an initial stage followed by a se-
ries of operations and transformations. This process, in turn,
is enabled to be created and visualized on a gestural level.
The composition can thus typically be represented on any
of the three levels. As a number of multi-dimensional points
(denotators) in a coordinate system (according to the form)
on the factual level, a directed graph of operations and trans-
formations on the processual level, and a dynamically mov-
ing and evolving system on a gestural level. BigBang imple-
ments standardized translation procedures that mediate be-
tween these representations and arbitrarily translate gestural
into processual compositions, processual into factual ones,
and vice versa.

More precisely, BigBang enables composers to draw, ma-
nipulate, and transform arbitrary objects represented in de-
notator form in an intuitive and gestural way and thereby
automatically keeps track of the underlying creative process.
It implements a powerful visualization strategy that consists
in a generalization of the piano roll view, which can be re-
combined arbitrarily and which works for any arbitrary data
type, as will be explained later (Figure 1). In the course of
composition, any step of generation, operation, and trans-
formation performed on a gestural input level is recorded
on a processual level and visualized in form of a transfor-
mational diagram, a directed graph, representing the entire
composition (shown in Figure 2). Furthermore, composers
cannot only interact with their music on an immediate ges-
tural level, but also oversee their own compositional process
on a more abstract level, and even interact with this process

76



Figure 1: A factual representation of a composition in Big-
Bang. Each of the rectangles represents a specific object,
having a number of freely assignable visual characteristics
such as size, position, or color.

by manipulating the diagram in the spirit of Boulezian anal-
yse créatrice (Boulez 1989). If they decide to revise earlier
compositional decisions, those can directly be altered, re-
moved from the process, or even inserted at another logical
location.

Finally, BigBang can visualize the entire compositional
process in animation, i.e. generate a “movie” of the trans-
formational evolution of a composition. This tool is of great
benefit for the metacreative control of the compositional pro-
cess in music. The composer can trace back to the moments
in the creative process where the walls of critical concept
boxes were opened, and take revise decisions taken after
that.

Generic Sound Forms
Before showing how sample datatypes (forms) for sound de-
sign can be created in practice, it will be helpful to introduce
the solution to one of the discussed “walls” to be used as a
reference, the one of different synthesis methods or formu-
las. This section presents a unified format that allows for
all common basic synthesis methods to be combined. First,
in addition to previously discussed aspects and techniques
concerning forms and denotators, we introduce just one very
useful definition technique of partial evaluation. It works as
follows. Suppose that a form F is defined which in its co-
ordinator forms refers to an already given form G. Then we
may replace G by a denotator D : A@G at address A, for
all denotators we want to build of form F . We may therefore
define a partially evaluated form F (D) which looks exactly
like F , except that instead of G, we insert D. This is a well-
defined procedure even without having previously defined F
sinceD has a unique reference to its formG. This technique
is very useful to create general forms that specialize to more
specific forms, as we shall see in the following section.

Here we focus on conceptual design of sound forms, i.e.
forms which capture concepts that are necessary to create
sound architectures. The challenge of such an endeavor is
to navigate between too general approaches which include
special cases, but without any specific tools to exhibit spe-
cial cases, and too special approaches that eventually appear
as items in a disconnected list. The too general approach

Figure 2: A graph of a composition process of a
SoundSpectrum including all five geometric transforma-
tions (Translation, Rotation, Scaling, Shearing, Reflection)
as well as the drawing operation (Add Partial).

would be to describe any sound by its physical appearance,
namely as a function f(t) of time t that is given in an ad-
equate discretization and quantization, but without and fur-
ther definition of how such functional values may be gener-
ated. The opposed, too special, approach could for example
consist of a Fourier synthesis form, an FM synthesis form
and a wavelet synthesis form, building a three-item list with-
out internal connections or visible generating principle.

The point of a generic sound form design is the same as
for concept design with forms and denotators in general: The
design must be open towards new forms, but their building
rules must be precise and specific enough to guarantee ef-
ficient building schemes. Moreover, the sound forms must
also have a basis of “given” sound forms, much like the
mathematical basis (category of modules) in general form
construction as implemented in Rubato Composer. We shall
however permit an extensible sound form basis, meaning
that, like it is generally admitted for forms, each new sound
form will be registered among the set of given sound forms.
Following the general rule for forms, we shall also require
unique names, no homonyms are permitted. This means that
we can define a SoundList form as follows (the notation fol-
lows the denotex standard (Mazzola 2002, p. 1143)):

SoundList : .List(SoundName),
SoundName : .Simpl(〈UNICODE〉).

All sound forms named in this container will be accessible
for sound production. To be precise, sound forms have to
produce “time” functions f : R → R. Their physical real-
ization is the job of sound generator soft- and hardware and
must be implemented by a general program that takes care
of discretization and quantization.

77



The generic sound form we propose here is defined by
GenericSound : .Limit(NodeList, Operation),
NodeList : .List(Node),
Node : .Limit(AnchorSound,GenericSound),
AnchorSound : .Limit(SoundList, Position),
Position : .Simpl(Z),
Operation : .Simpl(Z3).

These forms have the following meaning: The
GenericSound form presents lists of sounds, given in
Node form. They are combined according to one of three
operations on the respective sound functions in the list,
consisting of either their addition, their point-wise multipli-
cation, or their functional composition. These three options
are parametrized by the three values of Z3. Each sound node
specifies its anchor sound, which is a reference to an item of
the given sound list, and it also specifies “satellite” sounds,
which are given as a denotator of form GenericSound.

So the GenericSound form is circular, but its denota-
tors are essentially lists of lists of lists... that eventually be-
come empty, so no infinite recursion will happen for practi-
cal examples. Another more critical circularity can occur if a
sound definition refers to the sound being defined in the list
of given sounds. This happens quite often in FM synthesis
and is solved by a well-known reference of sound evalua-
tions at earlier time units.

Basic Examples
To get a general sinusoidal function, we suppose that the
sound list contains the function sin(t), named Sin, and con-
stant functionsA. The arguments of this function are defined
by the function form

Arg : .Limit(Frequency, Index, Phase)
where all these coordinators are simple forms with real val-
ues. Denotators arg : @(f, n, Ph) of this form define func-
tions 2πnft + Ph. Then the function A sin(2πnft + Ph)
results from the functional composition of the the argu-
ment function arg with the product of constant A with Sin.
Adding a list of such sinusoidal functions yields Fourier syn-
thesis sound forms. If one adds a modulator function defined
by a satellite at a node to the arg function, FM synthesis re-
sults.

The partial evaluation technique described above is an ex-
cellent tool for generating sound denotators that have spe-
cific parameters in their arguments, such as sinusoidal func-
tions as anchor arguments.

Ring modulation evidently results from multiplying given
sound functions. If one supposes that envelope functions are
in the sound list, one may use the product operation to cre-
ate wavelets. The sum of baby wavelets defined by discrete
transform of a father wavelet enables wavelet synthesis.

If a sample sound function is added to the sound list, one
may also include it in the generation of derived sound func-
tions. Since the generic form does not restrict sound con-
struction to classical sinusoidal waves, one may also define
Fourier or FM synthesis using more general generating func-
tions than Sin, in fact any function taken from the sound list
will do.

Sound Design in Practice with BigBang
The definitions above provide a format suitable for the def-
inition of any arbitrary sound based on additive, multiplica-
tive and modulative synthesis. In practice, the definition of
such constructs can be tedious and a visual and dynamic
method can be enormously helpful, especially when results
is expected to be manipulated in real-time with constant
sound feedback. This section shows how this “wall”, the
one of continuous and consistent visual representation, was
opened with the BigBang rubette.

Visual Representation and Transformation
A few remarks on the general visual and interactive con-
cept of BigBang are necessary here, but for a more thorough
discussion see (Thalmann and Mazzola forthcoming). A re-
cent generalization of the BigBang’s previous visualization
concept enables visual representation of any denotator of an
arbitrary form. Already in earlier versions (Thalmann and
Mazzola 2008), the basis of the concept is the association of
a number of view parameters (e.g. X-Position, Y-Position,
Width, Height, Opacity, or Color) with the Simple denota-
tors present in the given denotator. For instance, to obtain a
classical piano roll representation, we typically associate X-
Position with time (Onset), Y-Position with Pitch, Width
with Duration, Opacity with Loudness, and Color with
V oice. Any possible pairing is allowed, which can be use-
ful to inspect and manipulate a composition from a different
perspective. Furthermore, several of these perspectives can
be opened at the same time, and while being transformed
the composition can be observed from different perspectives
simultaneously.

For the representation of denotators of arbitrary com-
pound forms, we need to make a few more general defini-
tions:

1. The general visualization space consists of the carte-
sian product of all Simple forms appearing anywhere
in the anatomy of the given form. For instance, for a
MacroScore denotator of any hierarchical depth, this is
Onset× Pitch× Loudness×Duration× V oice.

2. Any Simple form X the module of which has dimension
n > 1 is broken up into several modulesX1, . . . , Xn. The
visual axes are named after the dimension they represent,
i.e. Xn, or X if n = 1.

3. Power denotators anywhere in the anatomy define an
instantiation of distinct visual objects potentially repre-
sented by view parameters. Objects at a deeper level, i.e.
contained in a subordinate powerset, are considered satel-
lites of the higher-level object and their relationship is vi-
sually represented by a connecting line. For example, in
a SoundScore (Thalmann and Mazzola 2010) we previ-
ously distinguished satellites and modulators. Now both
are considered satellites, however at different logical posi-
tions of the denotator, and they are no more distinguished
in a visual way.

4. Given a view configuration, the only displayed objects are
denotators that contain at least one Simple form currently
associated with one of the visual axes.

78



As in previous versions of BigBang, transfor-
mations can be applied to any selections of vis-
ible screen objects, be they of the same type or
not. For instance, in a composition based on a
GeneralScore containing denotators of both forms Note :
.Limit(Onset, P itch, Loudness,Duration, V oice) and
Rest : .Limit(Onset,Duration, V oice), from the per-
spective of Onset×Duration, both Notes and Rests can
be transformed simultaneously.

A Few Simple Sound Synthesis Examples
To illustrate the potential of the new version of BigBang
a few simple examples will be helpful. Even though the
generic form for sound objects described earlier elegantly
unites several common methods of sound synthesis, for cer-
tain practical purposes, in order to work faster and in a more
reduced way, simpler forms may be more suitable. Since
in Rubato Composer new forms can be defined at runtime,
users can spontaneously define data types designed for any
specific purpose. They can then immediately start working
with this form in the BigBang rubette, and define denota-
tors and manipulate them as quickly and intuitively as it was
possible with Scores in the previous version.

A requirement for working flexibly with different formats
is to ensure that they share as many Simple forms as possi-
ble in order to be represented in relation to each other. For
instance, in view of the to date most commonly used form
Score, it seems reasonable to define sound forms based on
Pitch and Loudness as well, rather than frequency and am-
plitude. As will be exemplified later, this has the advantage
that such forms can be represented and manipulated in the
same coordinate system as Scores, for the reasons described
in the previous section.

This is the second level on which a creative process can
be observed, this time controlled by the sound designer. The
most straightforward way is to start with a basic format that
is as simple as possible, for instance the simple form Pitch.
It seems exaggerated to speak of sound design when just
working with a single Simple form. All we can do is define
and transform one pitch at a time, a typical “wall”. The most
obvious way to open it is probably to extend the form in
order to work with sets of pitches or clusters of sound. For-
mally, all we need to do is put the form in a Power, which
leads us to PitchSet : .Power(Pitch).

We just obtained our first sound object, but again we face
a “wall” by not being able to control the amplitude of the
object’s parts. Inserting a Limit does the trick and leads to
the following structure:

SoundSpectrum : .Power(Partial),
Partial : .Limit(Loudness, P itch).

We obtain a constantly sounding cluster based on only two
dimensions, as shown in Figure 3.

This form, however, is not well suited for the creation of
harmonic spectrum, as we would have to meticulously ar-
range each individual pitch so that it sits at a multiple of a
base frequency. To break this “wall”, the following form will

Figure 3: A sample SoundSpectrum.

be useful:

HarmonicSpectrum : .Limit(Pitch,Overtones),
Overtones : .Power(Overtone),
Overtone : .Limit(OvertoneIndex, Loudness),
OvertoneIndex : .Simple(Z).

Figure 4 shows an example containing several such
spectra, which was done by simply defining a form
HarmonicSpectra : .Power(HarmonicSpectrum).
Since satellites (Overtone) and anchors
(HarmonicSpectrum) do not share Simple dimen-
sions, they can only be visualized if one Simple of each is
selected as axis parameters, here Pitch×OvertoneIndex.
However, they can both be transformed in arbitrary ways
on such a plane. This is the simplest way of working with
additive synthesis in BigBang. All oscillators are supposed
to be based on the same wave form and a phase parameter
is left out for simplicity. This is equally the case for the
following examples.

Even though the previous form leads to more struc-
tured and visually appealing results, we limited ourselves
to purely harmonic sounds, since all Overtones are as-
sumed to be based on the same base frequency Pitch. To
make it more interesting, we can decide to unite the sound
possibilities of SoundSpectrum with the visual and struc-
tural advantages of HarmonicSpectrum by giving each
Overtones its own Pitch by defining a form such as:

DetunableSpectrum : .Limit(Pitch,Overtones),
Overtones : .Power(Overtone),
Overtone : .Limit(Pitch,OvertoneIndex, Loudness).

Since values reoccurring in satellites are typically defined
in a relative way to the corresponding ones of their anchor,
we get the opportunity to define changes in frequency rather
than the frequency themselves. A displacement of a satellite
on the Pitch axis with respect to its anchor enables us to

79



Figure 4: A constellation of eight HarmonicSpectra with
different Pitches and Overtones.

detune them. Figure 5 shows an instance of such a spectrum.

The three forms above are but three examples of an infi-
nite number of possible definitions. Already slight variants
of the above forms can lead to significant differences in the
way sounds can be designed. For instance, generating com-
plex sounds with the above forms can be tedious as there are
many possibilities to control the individual structural parts.
A well-known method to achieve more complex sounds with
much fewer elements (oscillators) is frequency modulation,
which can be defined as follows in a recursive way:

FMSet : .Power(FMNode),

FMNode : .Limit(Partial, FMSet),

where partial is defined above. Examples as complex as the
one shown in Figure 6 can be created this way. Frequency
modulation, typically considered highly unintuitive in terms
of the relationship of structure and sound (Chowning 1973),
can be better understood with a visual representation such as
this. All carriers and modulators are show respective to their
frequency and amplitude and can be transformed simultane-
ously and in parallel, which has great advantages for sound
design compared to old-fashioned synthesizers and applica-
tions.

An Example of the Generic Sound Form
At this point it is worthwhile reassessing the power of
our generic sound form defined earlier. The possibilities of
form construction allow us to define sets (Power), products
(Limit), or coproducts (Colimit) of any two forms defined,
which allows us to use them concurrently. For instance, a
Limit of SoundSpectrum and Score allows us to create
compositions containing both constantly sounding pitches
and notes with a certain Onset and Duration. Figure 7
shows an example of such a composition. This way, any
number of synthesis methods and musical formats can be

Figure 5: An instance of a DetunableSpectrum, where the
fundamentals of the Overtones are slightly detuned.

joined. However, in order to have the possibility to logi-
cally combine synthesis methods, a cyclical form such as
GenericSound is essential. It allows us to generate struc-
tures where for instance sound objects are generated via ring
modulation, combined in an additive way, and finally used to
modulate a carrier object.

Now how can our GenericSound form be used in prac-
tice? Besides allowing for sounds to be built using com-
binations of all of the above synthesis methods, this for-
mat also draws on a repertory of any kind of sound waves
given in SoundList. Nevertheless, a crucial requirement
for maximal flexibility and intuitiveness in practice is to
use basic sounds that are based on a common space. The
most straight-foward example is to use standard functions
such as sinusoidal, triangular, square, or sawtooth waves
similar to the definition of a sine function given earlier.
They all share a 4-dimensional space spanned by ampli-
tude A, frequency f , index n, and phase Ph. For simplicity,
again, we may ignore Ph and obtain AnchorSounds rep-
resented in a three-dimensional space Loudness×Pitch×
OvertoneIndex. GenericSounds in turn are represented
by their Operation. A concrete Oscillator form corre-
sponding to this and replacing the AnchorSound above
could be defined as follows:

Oscillator : .Limit(Loudness, P itch,
OvertoneIndex,WaveForm),

WaveForm : .Power(Z4),

where WaveForm points to any of the four basic shapes
above (sinusoidal, triangular, square, sawtooth). Figure 8
shows an example of this form in use in BigBang.

Using the Creative Process for Sound Design
Now we arrive at the central point of our paper. Even though
the process of inventing the sound objects to work with was

80



Figure 6: An FMSet containing five carriers all having the
same modulator arrangement, but transposed in Pitch and
Loudness.

already connected to our creative process, there is a much
more direct way in which such a process itself can be used
to design sound. As mentioned earlier, BigBang remembers
anything composers do as soon as they start working with
defined forms. For example, if we decide to work with a
SoundSpectrum, we can draw visual objects on a two-
dimensional plane, each of them representing a sound ob-
ject. Then, we can select subsets of these objects and scale,
rotate, shear, reflect, or translate their position, generate reg-
ular structures (wallpapers) with them, or use forcefield-like
methods to alter them (Thalmann and Mazzola 2008). The
resulting construct is a graph as shown in Figure 2. By se-
lecting a node, composers can go back to any previous com-
positional state and by selecting an edge, they can gesturally
alter previous transformations while observing the effect on
whichever state is selected.

Used in a conscious way, this functionality enables sound
designers to predefine a sequence of transformations they
are interested in and only later refine them, by continuously
adjusting the end result. They can thus first improvise by
experimenting broadly with any of the available transforma-
tions until they reach a preferred sound, and later equally
dynamically travel through all sounds in the neighborhood
of the their result. Thereby they are not changing single pa-
rameters in a linear way as with common synthesizer inter-
faces, but changing multiple parameters in a complex way,
such as for instance rotating both frequency and amplitude
of hundreds of oscillators around a defined sound center.

MIDI-Controllers and Gestural Animation
There are several possibilities of using the constructs and
procedures defined in the previous and this section in prac-
tice. To work with SoundSpectrum in an independent
manner, for instance, we can simply let BigBang’s synthe-
sizer play the sounds continuously and then add or remove

Figure 7: A composition based on a Limit of a
SoundSpectrum (Pitches at Onset 0) and a Score
(Pitches on the right hand side).

remove partials and transform them in an improvised fash-
ion.

Some of the more pitch-oriented forms can, however,
easily be used to be triggered by a MIDI-controller.
HarmonicSpectrum for example has a clearly defined
base frequency, which can be used to transpose the sounds
relatively to fit the keys of a keyboard and be used in
the fashion of a traditional keyboard synthesizer. Even
non-harmonic sounds such as the ones defined by a
SoundSpectrum or an FMSet could be used this way, by
mapping the designed sound to the key corresponding to its
median point, lowest and loudest note, or the like, and trans-
posing it for all other keys.

Even during the process of sound design, a controller can
be helpful. For instance, BigBang enables all transforma-
tions to be modified using control change knobs by map-
ping them in order of application. This way, a practically
oriented sound designer can focus on playing and listening
rather than switching back and forth between instrument and
computer. This can of course be used in performance as well.

To exploit the full potential of BigBang for sound design,
one crucial aspect needs yet to be considered. The graph
generated during the process of sound design can also be
brought back in a gestural form by recreating each trans-
formation in time, using Bruhat Decomposition (Mazzola
and Thalmann 2011). What results is a sonified animation
of the sound’s evolution. Obviously, if our composition does
not contain any temporal element as such, as it is for all the
forms introduced above, it can be useful to bring in a tem-
poral aspect this way. By editing the evolutionary diagram,
the composer can thus not only design the sound as such,
but obtains a temporal dimension, which can mean that the
movie of the evolutive process becomes the actual composi-
tion. Again, sounds designed this way could be triggered by
MIDI-controllers as described above, which leads to richer

81



Figure 8: A generic sound using all three methods of synthe-
sis.

and more lively sound capabilities.

Conclusion
This paper took the sound design capabilities of the Big-
Bang rubette to illustrate the application of our theory of
the creative process on several compositional levels. First, a
practically viable solution has been presented that open the
multidimensional walls of sound design presented in the be-
ginning of the paper. Unified format, instructive spacial vi-
sualization, and continuous, intuitive, and multidimensional
manipulation present an extended space of experimentation.
Second, the process was used to describe sample prepara-
tory thoughts when it comes to defining the data types suit-
able for various situations, all either derived from or special-
ized versions of the unified format. Third, the methods were
described with which the creative process during the act of
sound design can be used to modify or refined the result-
ing sound in a meaningful way. The benefits are comparable
to other approaches such as evolutionary or artificial intelli-
gence systems, however, with the difference that designers
have possibilities to deliberately influence the outcome that
go beyond purely aesthetic decisions, without having to un-
derstand the underlying formulas in detail.

References
Andreatta, M.; Ehresmann, A.; Guitart, R.; and Mazzola, G.
2013. Towards a categorical theory of creativity for mu-
sic, discourse, and cognition. In Proceedings of the MCM13
Conference. Heidelberg: Springer.
Boulez, P. 1989. Jalons. Paris: Bourgeois.
Chowning, J. 1973. The synthesis of complex audio spectra
by means of frequency modulation. Journal of the Audio
Engineering Society 21.
Cope, D. 2005. Computer Models of Musical Creativity.
Cambridge, MA: MIT Press.

Dahlstedt, P. 2007. Evolution in creative sound design. In
Miranda, E. R., and Biles, J. A., eds., Evolutionary Com-
puter Music. Springer. 79–99.
Kinderman, W. 2003. Artaria 195. Urbana and Chicago:
University of Illinois Press.
Lewin, D. 1987/2007. Generalized Musical Intervals and
Transformations. New York, NY: Oxford University Press.
Ligeti, G. 1958. Pierre Boulez: Entscheidung und Au-
tomatik in der Structure Ia. Die Reihe 4:21–32.
Mazzola, G., and Andreatta, M. 2006. From a categorical
point of view: K-nets as limit denotators. Perspectives of
New Music 44(2).
Mazzola, G., and Park, J. 2012. La créativité de Beethoven
dans la dernière variation de l’op. 109 une nouvelle ap-
proche analytique utilisant le lemme de Yoneda. In An-
dreatta, M., et al., eds., Musique/Sciences. Paris: Ircam-
Delatour.
Mazzola, G., and Thalmann, F. 2011. Musical composition
and gestural diagrams. In Agon, C., et al., eds., Mathemat-
ics and Computation in Music - MCM 2011. Heidelberg:
Springer.
Mazzola, G.; Lubet, A.; and Novellis, R. D. 2012. Towards
a science of embodiment. Cognitive Critique 5:59–86.
Mazzola, G.; Park, J.; and Thalmann, F. 2011. Musical
Creativity – Strategies and Tools in Composition and Impro-
visation. Heidelberg et al.: Springer Series Computational
Music Science.
Mazzola, G. 2002. The Topos of Music. Geometric Logic of
Concept, Theory, and Performance. Basel: Birkhäuser.
Milmeister, G. 2009. The Rubato Composer Music Soft-
ware: Component-Based Implementation of a Functorial
Concept Architecture. Berlin/Heidelberg: Springer.
Miranda, E. R. 1995. An artificial intelligence approach to
sound design. Computer Music Journal 19.2:59–75.
Nattiez, J.-J. 1975. Fondements d’une sémiologie de la
musique. Paris: Edition 10/18.
Thalmann, F., and Mazzola, G. 2008. The bigbang rubette:
Gestural music composition with rubato composer. In Pro-
ceedings of the International Computer Music Conference.
Belfast: International Computer Music Association.
Thalmann, F., and Mazzola, G. 2010. Gestural shaping and
transformation in a universal space of structure and sound.
In Proceedings of the International Computer Music Con-
ference. New York City: International Computer Music As-
sociation.
Thalmann, F., and Mazzola, G. 2011. Poietical music scores:
Facts, processes, and gestures. In Proceedings of the Second
International Symposium on Music and Sonic Art. Baden-
Baden: MuSA.
Thalmann, F., and Mazzola, G. forthcoming. Visualiza-
tion and transformation in a general musical and music-
theoretical spaces. In Proceedings of the Music Encoding
Conference 2013. Mainz: MEI.
Uhde, J. 1974. Beethovens Klaviermusik II. Stuttgart:
Reclam.

82




