
Automatic Harmonization
Using a Hidden Semi-Markov Model

Ryan Groves
McGill University,

ryan.groves@mail.mcgill.ca

Abstract

Hidden Markov Models have been used frequently in
the audio domain to identify underlying musical struc-
ture. Much less work has been done in the purely sym-
bolic realm. Recently, a substantial amount of expert-
labelled symbolic musical data has been injected into
the research community. The new availability of data
allows for the application of machine learning models
to purely symbolic tasks. Similarly, the continued ex-
pansion of the field of machine learning provides new
perspectives and implementations of machine learning
methods, which are powerful tools when approaching
complex musical challenges. This research explores the
use of an extended probabilistic model such as the Hid-
den Semi-Markov Model (HSMM) to approach the task
of automatic harmonization. One distinct advantage of
the HSMM is that it is able to automatically differentiate
harmonic boundaries, through its inclusion of an extra
parameter: duration. In this way, a melody can be har-
monized automatically in the style of a particular cor-
pus. In the case of this research, the corpus was in the
style of Rock ’n’ Roll.

Introduction
The application of computers to the task of harmonic anal-
ysis has a rich history. Computers have proven to be both a
powerful and flexible tool for any field, and music research
is no exception. Furthermore, methods have been applied,
computationally, to music which have been adapted from
research in many fields. One prominent research method is
through the field of linguistics. Music has shown to have
many common features with natural spoken languages. The
challenge of identifying triadic harmonies by employing
a systematic grammar was approached as early as 1968
(Winograd). Much more recently, context-free grammars
have been shown to be useful in identifying similar high-
level harmonic structures in jazz music (Rohrmeier 2007),
and have also been used in combination with machine learn-
ing methods to identify similarity in harmonic structures (De
Haas 2009).

Researchers have also considered mathematical and ge-
ometric representations of pitch and time in order to dis-

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cover patterns in harmony. Fred Lerdahl created a hierarchi-
cal system of tonality in his book Tonal Pitch Space (1988).
In David Lewin’s Generalized Musical Intervals and Trans-
formations (1987), Lewin defines sets of pitches, as well
as corresponding groups of transformations. These pitches
coupled with their transformational groups create geomet-
ric “spaces” which define their own functional harmony.
Neo-Riemannian theory is a sub-discipline of this field of
transformational theory, and defines specific functions for
moving from one triad to another (Cohn 1998). Julian Hook
formalized the syntax and implications of these transforma-
tional spaces with his theory of Uniform Triadic Transfor-
mations (Hook 2002). Elaine Chew created her own model
of the tonal system by creating a three-dimensional array of
pitches in the shape of a spiral, which she uses to quantize
various elements of tonality (Chew 2000).

Yet another approach is to automatic harmonic analysis is
to create a rule-based system. One such system was created
with over 300 rules to identify triadic harmonies from digi-
tal scores (Maxwell 1992). David Cope incorporated a ma-
chine learning method to automatically compose new first-
species counterpoint harmonies given a corpus of existing
compositions which exemplify counterpoint (Cope 2004).
His system was able to divine a rule set from the existing cor-
pus, and immediately apply it to create new compositions.
Pardo and Birmingham sought to formalize the evaluation
of chordal analysis systems, and presented their own method
of labelling (Pardo 2002). Finally, the prominent systems for
harmonic analysis of symbolic scores were introduced and
reviewed systematically (Kroger 2008).

To date, the field which utilizes machine learning tech-
niques to approach musical tasks is both young and burgeon-
ing. As the prominent computational musicologist and algo-
rithmic composer David Cope said in only 2004:

Although significant research in machine learning has
taken place in the artificial intelligence community,
very little similar research has taken place in the field
of music (Cope 2004).

Since then, there has been a huge interest in machine
learning applications to harmonic analysis, especially in the
audio realm. Specifically, probabilistic models have been
used extensively to identify and predict harmony. In 2003,
Daniel Ellis and Alexander Sheh borrowed techniques from

Musical Metacreation: Papers from the 2013 AIIDE Workshop (WS-13-22)

48



the field of speech recognition to segment and label chords
from audio with a Hidden Markov Model (HMM) (Ellis
2003). In 2008, Microsoft researchers approached the task
of automatic accompaniment for sung pitches also using an
HMM (Morris 2008). Their system, MySong, analysed and
estimated the pitch of a user’s vocal input, and automatically
discovered the hidden sequence of chords that best fit the set
of pitches sung. A year later, a comprehensive approach to
the harmonic analysis problem was undertaken for symbolic
input using a probabilistic system (Temperley 2009). The
fundamental challenge in using machine learning is mod-
elling the task in a way that is congruent with the underlying
musical model; that is, injecting the machine learning mod-
els with musical intuition.

Audio-based models are limited with certain assumptions,
which are often presented outright. Certain of these assump-
tions were more limiting than others. For example, one as-
sumption listed in Microsoft’s research is:

A sufficient statistic (for the purpose of chordal accom-
paniment) for the notes in a measure is the fraction of
the measure during which each pitch class (C, C#, D,
etc.) is heard (Morris 2008).
Because of this assumption, notes are grouped together

by similar pitch classes, and their durations are accumulated
over each measure. Collecting notes into “buckets” or “vec-
tors” in such a way eliminates 3 things: the duration of indi-
vidual notes (since notes are grouped in corresponding pitch
classes), the onset timing of the notes, and sequential order
of the notes. Ellis and Sheh also reduced notes to pitch-based
feature information, and avoided explicitly modelling the
duration. In both cases, a vector of the different fundamental
pitches present in the measure is a useful approximation, but
an approximation nonetheless. This assumption was made
partially in order to facilitate the process of formatting the
sung input into musical input; it allowed the researchers to
avoid onset detection and note segmentation in audio. The
result is a model that has reduced musical intuition.

Another assumption that the group from Microsoft laid
out was this:

The location of measure boundaries in a vocal melody
is known during both training and interactive use of
our model. In the training phase, measure boundaries
are delineated in training data; during interactive use,
measure boundaries are determined by the timing of
the drum beat along with which the user sings (Mor-
ris 2008).
The ramifications of this assumption is that every chord

is normalized, and effectively considered to be the same
length. This eliminates the duration parameter almost en-
tirely, and loses a lot of contextual information in the pro-
cess. A chord that sounds for a duration of a single beat, for
example, greatly differs in its harmonic implications than the
same chord sounded for a full measure. For the work of El-
lis and Sheh 2003, they did not have boundaries labelled for
the training phase, so their chord boundaries were also an
approximation.

Thus, in developing a new model to more accurately re-
flect the underlying musical model that we would like our

machine to learn, it is imperative to incorporate the duration
and timing information. For exactly that reason, this paper
describes the method for automatic accompaniment using
the Hidden Semi-Markov Model. Using this model, the goal
is to generate a convincing Rock ’n’ Roll chord progression
given an input melody, without sacrificing the fundamen-
tal attributes of chord duration and the sequential timing of
notes.

The HSMM
As mentioned, the model chosen to learn the given task of
automatic harmonization is the Hidden Semi-Markov Model
(HSMM). This variant of the Hidden Markov Model inserts
an extra parameter into the state sequence information which
models the duration, or dwell time of each given state. The
HSMM is compatible with modelling music, because the du-
ration of a given chord in a chord progression will affect that
chord’s role in the musical structure. Since we are consider-
ing each chord to be a state in our hidden state sequence, the
HSMM is appropriate. In an HSMM, a state can dwell over a
certain number of observations, which means that each state
can have its own sub-sequence of observations. In terms of
our musical model, this means that we can consider each in-
dividual note to be an observation (rather than a bucket of
notes as in audio-based methods), and that each chord can
be associated with a variable number of notes. To accurately
represent the duration of a chord with the state dwell time,
three potential HSMMs were considered (Yu 2009).

The Explicit Duration HSMM
In the Explicit Duration HSMM, each state is considered for
all its possible durations (we will use the term “duration”
and “dwell time” synonymously to mean the integer num-
ber of observations that occur during that state), and the best
one is chosen at transition time. A state is therefore not al-
lowed to transition to itself, since that would be equivalent to
extending the current state’s dwell time (which has already
been determined). This model is of explicit duration because
the dwell time is considered and explicitly decided upon en-
tering the given state. Furthermore, with Explicit Duration
HSMMs, the state transition probabilities are independent
of the previous state’s duration. If we consider

a(i,d) → a(i+1,d) (1)

to be our transition probabilities for a general HSMM, then
in the explicit case we would have

a(i) → a(i+1,d) (2)

The Variable Time HSMM
The Variable Time HSMM considers the dwell time at the
current observation time for the current state, creating vari-
ability by allowing states to transition to themselves. A com-
mon method for the implementation of a Variable Time
HSMM is to consider every state to be a vector of (i, d),
where i is the given state, and d is its current dwell time.
The state transition probabilities, then, are dependent on the
previous state’s duration as well. The transitions that allow
for the varying dwell time consist of a state transition where

49



Figure 1: The HSMM in graphical form

the state is unchanged, but the dwell time is incremented to
d+ 1. The two possibilities for state transitions are then:

a(i,d) → a(j,1) (3)

a(i,d) → a(i,d+1) (4)

The Residential Time HSMM
The third variant of the HSMM is the Residential Time
HSMM. In this model, self-transitions are again allowed.
However, similar to the Explicit Duration Model, the resi-
dential time, τ , is decided upon entry into the state. Subse-
quently, for every observation after entering a state at time
tr with residential time τ , the probability that the state will
transition to itself is set to one for all t < tr + τ . Again,
state transitions are considered independent of the previous
state’s residential time.

A Derived Model
To successfully include the duration of chords in the state
sequence selection, a derived model is best suited. The vari-
ability of the duration is indeed a desirable feature, since it
allows us to compute the current state’s best duration in the
forward algorithm; it allows for the consideration of transi-
tions to a different state versus dwelling in the same state
at each time index. However, the dependence of the Vari-
able Time HSMM’s state transitions on the previous state’s
duration expands the state set considerably, and would un-
necessarily complicate the training and maximization steps,
for the first incarnation of the duration variable model. That

is, it is useful to isolate the first step of creating variable time
states in order to test the results and consider all the implica-
tions as compared to a regular HMM. So, the derived model
used is a hybrid of the Variable Time HSMM and the Ex-
plicit Duration HSMM, in which the duration of a state is
variable, but the state transitions are not dependent on the
previous state’s duration.

Data
The corpus used to train our derived HSMM was David
Temperley and Trevor De Clerq’s Rock Corpus (Temper-
ley 2011). This corpus represents a set of hand-transcribed
digital score representations created by the work of 2 sep-
arate musical experts. 200 songs from Rolling Stone’s list
of the best 500 Rock songs of all time were selected, and
both their melody and harmony were transcribed with corre-
sponding timing information for note and chord onsets. For
every song, the melody was transcribed by one expert, and
the harmony was transcribed by both experts.

There were some exceptionally advantageous features of
this data set and the information found in it. For one, the
song data could be considered to come from the same genre
of music. Since it’s from the same genre of music, we can
assume that the underlying musical model will remain rel-
atively consistent, and that our generated chord sequences
will represent that specific genre. Secondly, we have a com-
plete data set—that is, there is no missing data. HMMs (and
correspondingly HSMMs) are designed to be able to find the
most probable hidden sequence, even if there are no exam-

50



ples of those hidden sequences for the data that is given. For
the Rock Corpus, we have the hidden sequences for the data
on which the HSMM is trained, hence the training process
is much simplified. Third, the data provides all of the key
signature information necessary. That allows the assump-
tion that the key signature is known to be consistent with
our training set. Lastly, Temperley provides some tools for
formatting the data with a handful of different representa-
tions. One such representation is chromatic scale pitch class,
which is the representation that was chosen. With such a rep-
resentation, we can simplify pitches to their relative pitch
class, but still include pitches that are outside of the given
key signature.

An example of both an encoded melody and an encoded
harmony is shown in Figure 2. For the melody file, each
line represents an individual note. The four columns rep-
resent (from left to right): start time in corresponding au-
dio (in seconds), start time in beats, absolute MIDI pitch,
and key-relative MIDI pitch. For the harmony file, each line
represents an individual chord. The columns represent: start
time in corresponding audio (in seconds), start time in beats,
roman numeral, chromatic key-relative root, diatonic root
(e.g., VI = 6), current key tonic (in pitch class), and abso-
lute root (also in pitch class).

Implementation
Pre-processing
As mentioned above, our observations now represent indi-
vidual notes. This differs from audio-based models in which
notes are simplified to frame-based pitch information. This
representation allows us to model the different possible du-
rations of our chord states, relative to the notes. In order to
digitize a melody into distinct note observations, each note
was reduced to its key-relative pitch class representation.

This creates an assumption that notes an octave apart rep-
resent the same functional pitch (i.e. its class) for any given
note. This assumption is made frequently when trying to
model musical concepts, and although it is a simplification,
the advantages of grouping similar notes together outweigh
the loss of musical precision. One other possible observation
was added to represent the lack of any notes played over a
given chord state.

The states are represented by key-relative roman numer-
als. In general, these roman numerals stand for triads that
are relative to the given key signature. The transcribers con-
sidered a higher level of detail than was necessary for the
effective encoding of degree triads—alterations, inversions,
and additions to the fundamental triads were included. When
every alteration was considered to be its own state (as well
as an “End” chord which represented the end of the song),
a total of 143 distinct chords were found in the set of 200
songs. Because repetitions of chord phrases were counted as
new and unique observations, it is possible that a single song
with a large number of a particular chord (especially if that
chord were uncommon) could sway the overall distributions.
It was necessary, then, to group these chords by their triadic
equivalence, in order to find the common functional style
from the data set as a whole. One such grouping was, for all

Figure 2: Example of Melody (left) and Harmony (right)
file for an individual transcribed song, specifically “A Hard
Day’s Night” by the Beatles (Temperley 2011).

51



roman numerals, all additions were removed, except for the
dominant. The reasoning behind this was that there existed
many tonic triads with dominant 7ths or 9ths. These domi-
nants have implications of the key tonality, and thus could be
considered to be fundamentally different from a simple tonic
triad. Dominant additions include the dominant 7, ‘d7’, as
well as the dominant 9, ‘d9’(which implies the dominant 7,
as a musical rule). These additions were simply reduced to
a ‘d’ following the roman numeral. All inversions were also
removed, which is somewhat common in popular harmonic
representations. After the state space was grouped in such
a manner, the state set was reduced to 57 unique chords, or
states.

Learning
The implementation of the derived HSMM is only slightly
more complex than that of a regular HMM. For a de-
tailed overview of the workings of an HMM, see Rabiner
(1989). Since the state set is complete (there is no missing
data), training the data is just a matter of creating the state
transition matrix, the observation-per-state matrix, and the
duration-per-state matrix. The state transition matrix is cre-
ated by accumulating the transitions from one state to ev-
ery other state, for every state, and then normalizing that by
the starting state’s total occurrences. For the state of C Ma-
jor, for example, the transition matrix would include a row
of transition probabilities which represent the percentage of
times C Major transitioned to each other state, normalized
between 0 and 1. Similarly, each place in the observation-
per-state matrix represents the probability of a particular ob-
servation occurring over a particular state. The duration-per-
state matrix stores the probabilities for each state to dwell
for each of the possible durations.

Because of the format of the transcriptions in Temperley
and De Clerq’s Rock Corpus, the duration possibilities were
actually much more varied than expected. This was due to
the fact that chords which transitioned to themselves were
transcribed with only one chord symbol. For example, if a
song consisted of 3, 4-beat bars that sustained on the I chord,
it would look identical to a single bar of 12 beats sustained
on that I chord. Because of this, sometimes there were sit-
uations where the most of the song was a single chord (as
was the case in Nirvana’s “All Apologies”, for example), and
there was a string of more than 50 observations over that sin-
gle chord. Therefore, it was necessary to implement a maxi-
mum number of observations over which a single state may
dwell. A rational approach would be to consider each down-
beat to be the start of a new state. However, the downbeat in-
formation is not automatically accessible; although the ma-
jority of time signatures were 3 or 4 beats with either eighth
or quarter note tatums, certain songs contained anacruses or
time signature changes which obscured or shifted the down-
beats. In order to estimate the maximum number of notes
per chord, the total number of notes in the data set were ac-
cumulated, as well as the total number of chord changes.
Using these numbers (60,799 and 17,853, respectively), the
average number of notes per chord transition was found to
be 3.41 notes. This is relatively close to one note per beat,
if 3 or 4 beats are considered to be the majority of measure

lengths, and chords are considered to sustain for an average
of one measure. Given this, it is possible to make an edu-
cated guess as to the maximum chord duration, in terms of
note onsets. A maximum of 16 note observations per chord
would allow for vocal phrases with a rapid succession of
notes, as well as limit the length of a chord to 16 beats
for regions where the rate of note occurrences is closer to
average—that is, roughly one note per beat. In summation,
the number of total possible observations over a single state
was restricted to 16.

Once the model is trained on the given data set, it is pos-
sible to compute the most probable chord progression given
any melody, using the Viterbi algorithm. In an HSMM, the
Viterbi algorithm must be modified to look back and iterate
through the possible durations for each states, and to choose
the most probable duration for the considered state, given
the observations and the previous state. The problem with
this distinction is that the HSMM is no longer a realtime-
capable algorithm. One of the principles of Hidden Markov
Models is that the current state is only dependent on the cur-
rent observation and the previous state. In order to keep this
realtime capability, an approximation was made. Thus, when
computing the probability of transitioning from one chord
to another, if the chord stays in the same state (call it state
i transitioning from time d to d + 1), then instead of multi-
plying by a transition probability, the following product was
used:

P (i | d+ 1)

P (i | d)
(5)

Because of this, at any given point in the most probable se-
quence, a chord will consider changing states based on the
transition probability, and will consider staying in the same
state based on the current state’s probability of dwelling for
time d+ 1.

Conclusion
Future work
There are still many limitations in the model. For exam-
ple, timing/duration is indeed represented, but the timing of
the chord sequences is an abstraction of real musical timing
(since states are relative to the number of notes). Since the
notes currently do not represent duration, a link to the real
musical timing of the song is lost. However, this could be
remedied by separating the note observations into categories
of duration ranges, and encoding that in the note represen-
tation. It would also be plausible to model the transitions
between notes, in order to better predict note observations,
although the model would need to be modified more drasti-
cally to accommodate such a change.

A simple, but meaningful improvement would be to add
the dependence of a state’s transition probability on the dura-
tion of the previous state. This would again expand the state
space, but there is good musical motivation to categorize
chords based on the duration over which they sound. For ex-
ample, if a chord is only played for 1 beat, versus say 8 beats,
the notes that we could expect to be played over that chord
would surely change, as well would the chord we could ex-
pect to follow said chord. However, more data would most

52



Figure 3: A composed input melody.

likely be needed in order to train a model with different du-
rations of chords as different states, since for every possible
state duration we consider, we would be increasing the state
space by a multiple of 57.

Another musically intuitive improvement would be to re-
move the repetition of chord progressions from the training
data. Currently, if a verse is repeated, and the chord progres-
sion is unchanged, we will treat that chord progression as
if it is a new part of the song, when really we have already
considered that situation.

We could also remove the assumption that we know the
key signature in which the input melody is played. If that
were the case, we could find the best possible hidden se-
quence for all the 12 possible keys, and would simply need
to select the key signature of the sequence with the highest
probability.

Lastly, it would be very useful to run the Expectation
Maximization (EM) routine on new data with missing in-
formation. For example, if we had an effective melody ex-
traction method for audio-based rock songs, we could use
EM to further train our model on these new song melodies,
even though we would not have the chord progression infor-
mation. By using a melody extraction technique we could
potentially do it in an automated way.

The fact that the HSMM remains realtime makes it a vi-
able candidate for realtime instruments. If one were to con-
nect this harmonizer to a MIDI instrument, or to a vocal
pitch-tracker, the chord choices could be observed imme-
diately in an interactive way. Similarly, parameters could be
created for certain properties of the HSMM, for example the
chord complexity of the states, or the frequency of chord
changes.

Results
To test the HSMM on the data set, 5-fold cross validation
was used. Since there were no parameters to optimize (be-
cause the data set is complete), each fold consisted of sim-
ply a training set (made up of 4/5 of the data, randomly se-
lected), and a testing set (with the one remaining partition).
Each fold used a different testing set, and trained the model
on the remaining training set.

Using this model, the Viterbi function was computed
over the sequence of notes representing an entire song, and
the most probable chord sequence was compared with the
song’s original, solution chord sequence. For every gener-
ated chord in the most probable chord sequence, the correct
predictions were simply tallied and compared to the total
number of observations in the song. Using this as the bench-
mark, the correct chord was predicted an average of 25.42%

Figure 4: A composed input melody, harmonized with the
chord sequence generated from the HSMM.

for every song over the five folds. The correct boundary be-
tween chords was discovered 10.63% percent of the time
(that is, when the solution chords had a boundary, the pre-
dicted chord also had a boundary). Considering that there
are 57 possible chords to choose from in the state set, this
percentage is a considerable increase over a simple random
selection (which would equate to 1.75% expected accuracy
for randomized guessing).

Furthermore, an example melody was composed specifi-
cally to demonstrate its ability to generate a stylistic harmo-
nization from any melodic input. The melody was composed
in the key signature of C with a Dorian mode centrality, and
was designed to include every possible chromatic note, so as
to test the chord generator’s flexibility. The melody is shown
in Figure 3.

Given that melody, the HSMM generated the most prob-
able chord progression. That progression is shown in Figure
4. There are a few interesting things to point out from the
generated chord progression. For one, the V/V, or D ma-
jor is chosen to accompany the D minor blues lick which
starts on the pickup of the third bar. It is not uncommon to
use the minor blues scale on the tonic of a major chord in
Rock. Another interesting aspect of this progression is the
repetition. The opening melodic phrase repeats three times
exactly, and then a fourth time with a modified ending. The
HSMM generates a repeated phrase as well. However, the
phrase it generates is of a longer period than the melodic
phrase—it begins on the first melodic phrase, and doesn’t
repeat until the third melodic phrase. It is quite interesting
that it would naturally create a longer phrase structure in the
harmony. Lastly, some of the chords which sound for only
a single note in length have rather dissonant notes occurring
in the melody. I believe this is a situation in which the chord
sequence probabilities slightly override the probabilities of
the note observation being found over that chord.

Conclusion
Although simplistic, the HSMM proves to be able to harness
the style of a particular corpus. The ability to model duration
and maintain the sequence of notes in the underlying repre-
sentation is advantageous, and allows for more specific du-
ration details to be further incorporated into the model. The
Rock ’n’ Roll corpus of only 200 songs was shown to be
sufficient in training the model on Rock ’n’ Roll harmonies.
Given the metrics of cross-validation, and the viable con-
crete example, the HSMM has shown to be a candidate for
realtime, automatic harmonization, and in the least is cer-

53



tainly a good candidate for future music research.

References
Elaine Chew. Towards a Mathematical Model of Tonality.
PhD thesis, University of Southern California, 2000.
Richard Cohn. Introduction to neo-riemannian theory: A
survey and historical perspective. Journal of Music Theory,
42(2):167–180, 1998.
David Cope. A musical learning algorithm. Computer Music
Journal, 28(3):12–27, 2004.
David Cope. An expert system for harmonizing chorales
in the style of J.S. Bach. Understanding Music with AI:
Perspectives on Music Cognition, pages 355–63, 1992.
W. Bas De Haas, Martin Rohrmeier, Remco C. Veltkamp,
and Frans Wiering. Modeling harmonic similarity using a
generative grammar of tonal harmony. In Proceedings of the
10th International Society for Music Information Retrieval
Conference, 2009.
Julian Hook. Uniform triadic transformations. Journal of
Music Theory, 46(1/2):57–126, 2002.
P. Kroger, A. Passos, M. Sampaio, and G. de Cidra. Rameau:
A system for automatic harmonic analysis. Proceedings of
the 2008 International Computer Music Conference, pages
273–81, 2008.
Fred Lerdahl. Tonal pitch space. Music Perception: An In-
terdisciplinary Journal, 5(3):315–49, 1988.
David Lewin. Generalized Musical Intervals and Transfor-
mations. New Haven and London: Yale University Press,
1987.
H. J. Maxwell. An expert system for harmonic analysis of
tonal music. Understanding Music with AI: Perspectives on
Music Cognition, pages 335–53, 1992.
D. Morris, S. Basu, and I. Simon. Exposing parameters of a
trained dynamic model for interactive music creation. Pro-
ceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence, 2008.
Brian Pardo and W. Birmingham. Algorithms for chordal
analysis. Computer Music Journal, 26(2):27–49, 2002.
Lawrence R. Rabiner. A tutorial on hidden markov models
and selected application in speech recognition. In Proceed-
ings of the IEEE, volume 77, pages 257–86, 1989.
Martin Rohrmeier. A generative grammar approach to dia-
tonic harmonic structure. In Proceedings of the 4th Sound
and Music Computing Conference, pages 97–100, 2009.
Alexander Sheh and Daniel PW Ellis. Chord segmentation
and recognition using em-trained hidden markov models. IS-
MIR 2003, pages 185–191, 2003.
David Temperley. A unified probabilistic model for poly-
phonic music analysis. Journal of New Music Research,
38(1):3–18, 2009.
David Temperley and Trevor De Clerq. A corpus analysis of
rock harmony. Popular Music, 30(1):47–70, 2011.
Terry Winograd. Machine models of music. Chapter Lin-
guistics and the computer analysis of tonal harmony, pages
113–153. MIT Press, Cambridge, MA, USA, 1968.

Shun-Zheng Yu. Hidden semi-markov model. Artificial In-
telligence, an International Journal, 174:215–43, 2009.

54




