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Abstract

In the proposed demo we will present a method for design
of musical composition using the Audio Oracle (AO) - a
machine improvisation method that constructs and produces
variation from a music recording using a graph of repeated
factors found in the recording. The compositional / impro-
visation use of AO involves controlling the rate of recombi-
nation, the length of common history (length of the repeated
factors) and selection of regions in the AO where the machine
operates. One of the challenges in working with AO is under-
standing the generative potential of different audio materials
and marking and allocating regions in a recording where AO
should operate to achieve the desired musical result. Recently
we introduced a novel analysis method ”on top” of the AO
structure that captures aspects of order and complexity that
we call Information Rate. This measure, belonging broadly
to a field of study know as Musical Information Dynamics, is
related to Bense formulation of aesthetics in terms of entropy
and compression. In the demo we will briefly explain the the-
ory behind Audio Oracle and Information Rate and demon-
strate a process of designing a composition / structured im-
provisation based on analysis of the AO graph. In contrast to
the usual live interaction method where both the audio input
to the oracle and the improvisation are done ”on the fly”, in
this presentation the audio analysis will be done prior to the
presentation, while during the talk we will show the process
of planning a composition and then do a live performance
with the AO based on this design.

Introduction
Audio Oracle is a graph structure built on top of features
derived from an audio recording that indexes repeating seg-
ments (factors) in a sequence of features (Dubnov, Assayag
and Cont, 2007). This structure is derived from a string
matching algorithm called Factor Oracle (FO) (Allauzen,
Crochemore and Raffinot, 1999) and generalizes its exact
matching approach to approximate matching over a metric
space. For generative applications AO uses the links be-
tween common suffixes for recombination of sub-clips of
the original recording. Since audio recombinations are done
in a smooth manner due to similar past (common suffixes)
among the recombined segments, this method effectively
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accomplishes ”stylistic re-injection“ (Assayag, Bloch, Cont
and Dubnov, 2010).

Music Information Dynamics is a field of study that con-
siders evolution in information contents of music (Dub-
nov 2006),(Potter, Wiggins and Pearce 2007),(Abdallah and
Plumbley 2009), which is assumed to be related to structures
captured by cognitive processes such as forming, validation
and violation of musical expectations (Meyer 1956). In par-
ticular, a measure called Information Rate (IR) was studied
in relation to human judgements of emotional force and fa-
miliarity (Dubnov, McAdams and Reynolds 2006)

Information Rate (IR) measures the reduction in uncer-
tainty about a signal when past information is taken into ac-
count. It is formally defined as mutual information between
past xpast = {x1, x2, ..., xn−1} and the present xn of a sig-
nal x

IR(xpast, xn) = H(xn)−H(xn|xpast) (1)

with H(x) = −ΣP (x)log2P (x) and H(x|y) =
−ΣP (x, y)log2P (x|y) being the Shannon entropy and con-
ditional entropy respectfully, of variable x distributed ac-
cording to probability P (x). In (Dubnov, Assayag, and Cont
2011) an alternative formulation of IR using AO was devel-
oped

IRAO(xpast, xn) = C(xn)− C(xn|xpast) (2)

with C(·) being the coding length obtained by a compres-
sion algorithm and measured in terms of the number of bits
required to represent each element xn.

It should be noted that eighty years ago Birkhoff formal-
ized the notion of aesthetic in terms of the relations be-
tween order and complexity (Birkhoff 1933), later formu-
lated in terms of information theory by Bense (Bense 1969)
where complexity is measured in terms entropy, and order is
the difference between uncompressed and compressed rep-
resentations of the data. In our case past is used for com-
pression, and the whole method bears resemblance to the
computational aesthetics approach in the sense that it pro-
vides a graph of order (order = uncompressed complexity
- compressed complexity), thus motivating us to use these
”local aesthetics“ measures for choice of materials in our
meta-composition design.

In a recent paper (Dubnov, Assayag and Cont 2011) it was
shown how Audio Oracle structure can be used to estimate
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IR of an audio recording. For the sake of completeness, we
will briefly recapitulate this method here. For more details
on the compression method itself the reader is referred to
(Lefebvre and Lecroq 2001).

Details of AO-IR calculation method
When a new frame (i+1) arrives to AO, a new suffix link and
the Longest Repeated Suffix (LRS) for this frame are com-
puted. In case when no previous repetition was found the
suffix link points to state 0. In such case this new frame has
to be individually encoded. Otherwise if a suffix link to ear-
lier position is found and the LRS is smaller then the number
of steps passed since the last encoding event, then the whole
preceding segment is encoded as a pair (length, position).

For example, in the symbolic case the word aabbabbab-
bab will be encoded as follows: The first letter will be en-
coded using the letter a using 1 bit over an alphabet {a, b}.
The next occurrence of a can be encoded as a pair (1, 1),
but since encoding it will take more bits then encoding a
individually, we will use the shorter encoding and proceed
to encoding next b individually and then deciding between
representing the following b as a pair (1,3) or as a single
letter, choosing the later option. The compression advantage
appears for the remaining portion of the string. According to
the encoding method this segment can be encoded as a pair
(8, 2), which will take log2(8) + log2(12) = 6.58 bits, prac-
tically offering 1 bit saving compared to encoding of the 8
characters individually.

In the AO case, the symbols are replaced by feature vec-
tors, and in order to define the uncompressed complexity
C(xn) we need to find a quantity that would be equivalent
to the log of the size of the alphabet in the symbolic case.
We do that by considering the number of forward links orig-
inating from state 0, δ(0, :), which requires log2|δ(0, :)| bits.
Accordingly we define C(xn) = log2|δ(0, :)|, ∀n. From
the AO structure we find the points where the compression
occurs according to the method mentioned above. For ev-
ery frame that occurs between the encoding events we com-
pute the compression gain in terms of the number of bits re-
quired to represent the pair (length, position), divided by
the length of the encoded segment.

Algorithm 1 Information Rate using AO
Require: Array K containing a list of AO encoding event

occurrences, unconditional complexityC = log2(|δ(0, :
)|, M = max(LRS), and sequence length N

1: for i = 1 to |K| − 1 do
2: L = K(i+ 1)−K(i)

3: IR[K(i) : K(i+1)] = max(C− log2(N)+log2(M)
L , 0)

4: end for
5: return Array IR

Compositional Design for Machine
Performance

The main goal of the current presentation is to show how
AO can be used as a generator (high level instrument) in a

new composition that is designed off-line. For on-line, real-
time interaction approach, two main systems have been built
: Omax by Assayag, Bloch and Chemillier, an OpenMu-
sic/Max application for co-improvisation with human per-
formers using the Midi, audio and video media ; and MiMi
by A. Franois and E. Chew, a multimodal interface for co-
improvisation with the computer that gives a visual feedback
to the performer, helping him to anticipate the computers re-
actions. Omax operation is usually done as a trio - human
musician-improviser, machine improviser and human oper-
ator of the machine. The role of the humans in this setting is
quite demanding - the musician creates initial musical ma-
terials and then listens and responds to machine improvisa-
tion. The human operator listens to the human musician and
controls the machine using his own taste and musical skills.

In this demo we separate between the steps of providing
musical input to the machine and control of machine impro-
visation. The recording, analysis and design of the piece will
be done off-line. The remaining live element in the demo
will be running the oracle according to compositional plan.
The process of creating the composition consists of the fol-
lowing steps:
• Using pre-recorded music materials to perform the AO

analysis.
• Preforming IR analysis of the AO graph structure.
• Manual design of composition based on AO visualization

and IR annotations.
• Live rendering of new improvisation according on the

compositional design.
To demonstrate the method we use IR analysis of an AO

created from a recording of Beethoven Piano Sonata No. 1
in F minor. Comparison to musicological analysis shows that
IR successfully captures salient structural aspects of musical
form. An additional graph (not shown here) points to the lo-
cations in the recording where the repetitions actually occur.
A possible improvisation scheme based on this information
is as follows:
• Select several short segments from the exposition section

as the main operating regions.
• Create an exposition by switching between several gener-

ative materials.
• Create a development section by improvising on the ex-

position starting with low recombination rate and gradu-
ally increasing the recombination rate and short repetition
length.

• For Cadence uses exposition materials with high minimal
repetition length.

It should be noted that during the performance the improvi-
sation can be recorded back into an oracle. This allows reuse
of new and surprising materials in a later development. In the
demo similar types of analysis will be conducted on various
musical materials, with various features and time scales. In
terms of the ”aesthetic“ interpretation, the higher the graph,
the more order exists in that segment since it can be ”ex-
plained“ and hopefully perceived by pointing to an earlier
repetition.
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Figure 1: AO IR analysis for Beethoven Sonata No. 1

To get an insight into the segmentation potential of the
AO-IR graph we compare it to the first eigenvector of a row-
wise normalized pairwise distance matrix (so called Self
Similarity matrixthat can be interpreted as a transition prob-
ability matrix Pi,j between frames i and j. The eigenvector
v = Pv gives the stationary distribution under this Markov
model, and as we can see, the recurrent segments under AO-
IR correspond to frames with higher probability of occur-
rence under the more simple Markov model.
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Figure 2: Recurrence profile using the first eigenvector of a
Markov Model derived from Cepstral Self Similarity. This
graph is compared to the AO based IR measure (dashed)

In (Dubnov, Assayag and Cont 2011) we showed how the
sum of IR values over the whole signal can be used to find
the optimal threshold for the AO estimate. Generalizing this
idea, we consider IRs of different features from AO’s con-
structed from different musical parameters. In our practice,
the most common features used for improvisation are pitch

and spectral features, providing two oracles that give dif-
ferent structures for improvisation. Accordingly, IR can be
used not only for selection of materials within an oracle, but
also for switching between ”most informative“ or ”most aes-
thetic“ oracles at different points in time.

Conclusion
Generating novel music from a recording can be done us-
ing AO. The low level repetition structure found by AO can
be used effectively for machine improvisation by creating
stylistic re-injections into music performed by a human im-
provisor. The re-injections, although stylistically coherent,
do not take into account larger musical structures. Using a
”compression oracle” we are able to analyze the AO struc-
ture in terms of information dynamic properties. We use In-
formation Rate as a meta-feature for improvisation planning
in terms of higher level aesthetic categories. In the demo
we will present a larger scale planning process for a human
operator of a machine improvisation system. Aspects of no-
tating the actions of a human operator and aesthetic criteria
for designing such composition will be discussed.
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