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Abstract

Neural networks and recurrent neural networks have
been employed to learn, generalize, and generate mu-
sical examples and pieces. Yet, these models typically
suffer from an inability to characterize and reproduce
the long-term dependencies of musical structure, result-
ing in products that seem to wander aimlessly. We de-
scribe and examine three novel hierarchical models that
explicitly operate on multiple structural levels. A three
layer model is presented, then a weighting policy is
added with two different methods of control attempt-
ing to maximize global network learning. While the re-
sults do not have sufficient structure beyond the phrase
or section level, they do evince autonomous generation
of recognizable medium-level structures.

Introduction
Creativity, and more specifically musical creativity, is diffi-
cult to quantify and subject to differences in experience, cul-
ture, goals, and other varied individual contexts. We there-
fore have focused our attention on novelty as a slightly easier
path to understanding machine creativity. Furthermore, we
take inspiration from cognitive models that imply a strong
hierarchical structure underlies diverse brain activities such
as pattern matching and associative memory. We have cre-
ated and implemented a simple model of musical novelty
that incorporates both of these features, such that complex
notions of novelty emerge in higher hierarchical levels de-
rived from simpler notions at the lower hierarchical levels.
The lower levels are in turn influenced by feedback from
higher levels, choosing local details that attempt to max-
imize, in some sense, the novelty at all levels rather than
merely local levels.

Neural networks (NN), and particularly recurrent neural
networks (RNN) (Eck and Schmidhuber 2002), while capa-
ble of learning note-to-note dependencies from given musi-
cal examples and generating new sequences as a result, suf-
fer from a host of problems relating to the “vanishing gra-
dients” problem (Hochreiter et al. 2001) in RNN. Conven-
tional gradient learning methods error flow either quickly
vanishes or explodes, resulting in an inability to robustly
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store past information about inputs. In music, long-term de-
pendencies and relationships are definitive of formal struc-
ture, style, and phrasing. Without these long-term dependen-
cies the music can appear aimless and incoherent (Mozer
1999; Smith and Garnett 2012).

We address this deficiency by creating a hierarchical
structure of NNs in which each layer evaluates the output of
the next lower layer, ideally providing long-term structure
for the generated output. Two different models are proposed
and examined, one using a directed acyclic graph struc-
ture and another adding a feedforward amplification control,
with two variations, to push the system out of local minima.
Following Schmidhuber (2009), we employ an intrinsically
motivated prediction model allowing it to operate within a
context of learning-by-doing, rather than by imitating pre-
existing exemplars, revealing the inherent characteristics of
the system.

Model
Given the complexity and difficulty of defining creativity
unambiguously, we start with notions of novelty in an im-
mediate context. For a given observer (i.e. human performer
or listener) sequences of musical events are often compared
using a culturally and individually formed value function to
determine the desirability of sequences. This is what we un-
derstand as musical preference, resulting in individual affini-
ties for certain kinds of music or artists over others. Given
appropriate experience, humans appear to have the ability
to judge music, yet the theoretical details of this process of
evaluation remain obscure and highly debatable. However,
we posit that such a musical preference function exists, for
the sake of the following formulation.

If such a function exists, at any given point in time within
a musical piece it should be possible to identify the next
most valuable event, or to predict a relative aesthetic value
for all conceivable immediately subsequent events. To keep
the choices tractable we consider an event to be a note on-
set and thus our problem becomes a matter of evaluating all
possible subsequent notes, at any time point when a predic-
tion is desired (say, every beat). Further, for the sake of con-
strained evaluation, limiting to four octaves of the western,
equal-tempered, 12-tone scale we can consider 48 possibili-
ties at each time step.

If we further assume that the state at any point in time
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Figure 1: Single time slice of the DAG corresponding to the
hierarchical intrinsically motivated generative model.

incorporates the relevant state from previous time steps, we
have a simple Markov chain with the value function acting
as a transition from state at time t − 1 to the state at time t
(the top level of fig. 1). If At−1 is the previous musical con-
text, or state, and our undefined aesthetic valuation function
(which relates to the concept of novelty) serves as a tran-
sition function, predicting At, the next state our synthetic
listener should find interesting is found by:

P (At|At−1) = novelty(At|A1:t) (1)
If we had such a function and a comprehensive memory

of previous states (A1:t, including previous pieces), iterat-
ing this function recursively could lead to a generative sys-
tem capable of composing or improvising novel, interesting
pieces. However, a system operating on a single level (such
as the top layer of fig. 1) would require an extensive formu-
lation of the context state in order to generate meaningful
sequences with long-term relationships and dependencies.
Additionally, fully predicting aesthetic preferences would
seemingly involve the comprehensive auditory history of the
individual in question, yet a simpler model could prove use-
ful, creating pieces within a limited musical style or context
to evaluate the application of the models in question.

A more tractable solution is to create a hierarchical model
that groups sets of events in reasonable chunks (say, 3-5
events) and abstracts each layer into higher levels of struc-
ture. In musical terms this is analogous to the relationship
of notes to motives to sub-phrases to phrases, etc. This for-
mal abstraction can stack up to the level of a complete piece
and beyond. Each level applies a similar transition function,
asking, for example: after motive A, which motive will be
optimally aesthetically interesting?

Figure 1 depicts such a model commencing at the note
level at the bottom, C, and abstracting progressively with
each higher level. The arrows indicate the influence of each
layer’s previous state on the next, given our novelty function,
and the influence of the higher levels of abstraction on the
note level, C. The directed acyclic graph (DAG) depicted in
fig. 1 admits to the following factorization:
P (A1:T , B1:T , C1:T ) = P (A1)P (B1|A1)P (C1|B1) (2)

×
T∏

t=2

P (At|At−1)P (Bt|Bt−1, At)P (Ct|Ct−1, Bt)

Data Representation
Based on (Gjerdingen 1990; Smith and Garnett 2011; 2012)
we take the operative context state to be a feature vector that
uses spatial encoding (Davis and Bowers 2006) at the lowest
level to create a short-term memory of note events. To keep
the problem manageable only pitch (or a rest) is encoded,
producing a vector comparable to that employed in (Smith
and Garnett 2012), comprising the last five pitches, pitch
classes, intervals, interval classes, and register information.
Additional musical aspects, such as durations, tempo, and
dynamics are ignored for the moment in order to examine
the computational model in its barest form.

This feature vector is analyzed by an Adaptive Resonance
Theory (ART)(Carpenter, Grossberg, and Rosen 1991) neu-
ral net in order to produce a classification which is then
encoded into a feature vector for the next higher layer to
analyze (as employed by Gjerdingen (1990)). Because the
ART identifies new categories and classifications as new pat-
terns are perceived the state space for the upper layers is un-
bounded, and typically expands over time (with a maximum
rate of one category per input, but typically much slower,
around one category per 5-10 inputs, decreasing over time).
In our simple test cases we typically generate on the order
of two-thousand events (notes or rests) resulting in several
hundred category identifications.

As described above, the transition from the current state
to the next state is done in a predictive fashion, testing all
possible proceeding inputs and measuring the value of the
transition. From Schmidhuber (2009), the function used to
calculate this value attempts to maximize the intrinsic inter-
est of the algorithm as measured by the amount of change in
the ART neural nets. Schmidhuber (2009) proposes models
to measure intrinsic interest and we employ a variation that
contrasts the expansion of the ART nets with the amount of
change in the weights of the nodes. We calculate the intrinsic
reward that any layer generates based on a given transition
by (β and γ are constants set to limit the result [0, 1]):

log(β − (|∆At − γ|+ γ))

s
(3)

When new categories are identified they cause the ART to
define new nodes, increasing the amount of data space (s)
required to store the ART, and signifying a move towards
chaos. The amount of residual change in the weights of the
nodes (∆At) similarly reflects the boredom-chaos contin-
uum, where purely repetitious inputs produce no adaptation
in the network (∆At ≈ 0) and novel inputs produce sig-
nificant changes (∆At ≈ 1). The constant γ specifies the
maximal point within the boredom-chaos range (nominally
r ≈ 0.5). Combining these two measures of change causes
the algorithm to prefer inputs that cause adaptation in the
node’s weights without causing a new category to be cre-
ated.

Algorithmically, the graph is resolved in a top-down,
comprehensive fashion (which will be replaced with a
Monte Carlo approach as more degrees of freedom are in-
troduced, with further research). By testing each possible
subsequent state at the each level a set of weights are calcu-
lated employing the novelty function, above. Here the values
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Figure 2: Musical fragment generated by computational
model. See discussion section, below.

predicted by each pair of neighboring layers are summed:

P (Bt|Bt−1, At) = novelty(Bt−1)α+ (1− α)At (4)

P (Ct|Ct−1, Bt) = novelty(Ct−1)α+ (1− α)Bt (5)
Where α = 1/3.

Dynamic Model
A single layer, one-note look ahead model based on Schmid-
huber (2009) appears to lack longer formal structures (Smith
and Garnett 2012), yet this hierarchical model (see fig.
1) shows hints of long-term memory and dependencies at
longer time scales. However, the fixed nature of the layer’s
relationship (equations 4 and 5, above) maximizes local re-
ward gain, denying note choices that would be deemed lo-
cally boring, at the expense of longer-term gain. At any point
in time only a limited number of state transitions are avail-
able for a given layer (due to the short-term memory nature
of the feature encoding). As an example consider the fol-
lowing sequences: AAA, AAB, ABC, and CBA where each
character represents a distinct musical event (or note). If the
current state is the first sequence (AAA) direct transitions
(accomplished by appending individual characters to the se-
quence) are only possible to AAA and AAB. Yet, the up-
per layer (in any 2 layer relationship) may weight all of the
accessible transitions at 0, giving significant weight to inac-
cessible transitions, such as a transition from AAA to CBA
which would result in two intermediate sequences (AAC and
ACB). This can be seen in fig. 3, showing reward generated
at each layer over time, where each layer has periods of 0
reward as the system crosses over undesirable sequences to
get to more interesting areas. The most extreme cases see
the system stuck repeating a single note (a local maximum),
where the only viable next step is a repetition of the current
state. Simultaneously, the generated intrinsic reward for all
layers drops to 0.

To counter this effect we consider the influence of the
middle layer on the lower layer as a policy that is controlled
by a yet higher layer (see fig. 4, providing a single connec-
tion, X, between the lowest layer, C, and a tertiary layer,
A). This model is closer in spirit to recent work by Hin-
ton (2006), using deep networks and restricted Bolzman ma-
chines.

When the reward resulting from the transitions of A de-
cline, we assume that this is a the result of becoming stuck in
an area of non-novel states which B has been unable to move
out of. The solution is to give the lowest layer, C, more free-
dom to move to novel areas in these situations, which will
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Figure 3: Reward generated at each level over time.
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Figure 4: Single time slice of the DAG with the inter-level
policy node.

Figure 5: Musical fragment generated by model with policy
nodes.

give A and B more opportunity for reward after a few time
steps. Conversely, when A is receiving more reward, B is
given precedence in determining future outputs.

Feedforward Policy
Finally, we consider an alternative model with the same goal.
At time t the sum of the weights for a given layer is calcu-
lated and this sum is used to determine its weighting policy
α = Xt for the next time step (see fig. 6). Thus if the higher
layer, in any two-layer configuration, is proving too restric-
tive (due to isolation in local minima), the lower layer will be
given more priority and freedom to pull the system to more
novel areas at the next time-step.

Xt =

∑
P (Ci

t |Ci
t−1, B

i
t)

i
(6)
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Figure 6: Single time slice of the DAG with feedforward
policy nodes.

Figure 7: Musical fragment generated by model with feed-
forward policy nodes.

Discussion
These models attempt to address the problems of generat-
ing long-term musical structures employing NNs. However,
even the best human improvisers required many hours of ex-
perience and training, and yet the models presented here are
effectively beginners. The ability to introduce them to preex-
isting musical styles, or to generalize based on the system’s
own past preferences, has not been approached herein. The
intrinsically motivated nature of the system indicates that
these models will exhibit the same tendencies after training
on musical examples, albeit with different surface textures
and harmonic language.

Each of the musical figures exhibits characteristics of rep-
etition and development, creating structure within the few
bars depicted. In fig. 2 chromatic fragments, alternatively
hesitant and continuous, move down and then up the scale
until, arriving at the starting pitch of G, the texture breaks
into major-7ths. This instigates an ascension up two octaves
where a new chromatic pattern commences, now without
any immediate pitch repetition but on the same pitches as
the opening sequence. Thus we see a statement interrupted
followed by a return with variation.

Figure 5 employs different material, using a fully dimin-
ished arpeggio, and does not show any significant harmonic
movement. However the same rhythmic pauses followed by
short clusters of notes are in evidence. The strongest struc-
tural element seems to be register, as the fragment starts with
an ascension up an octave, followed by a rapid descent down
three octaves. After a couple of bars of centered around the
low B-flat, two rapid climbs are seen delineated by a rapid
descent in the middle. The last stave of the figure can be
seen as a repetition with temporal diminution of the first two

staves, creating a structure of acceleration at the phrase level.
The third example, fig. 7, appears to be setting up a longer

time-scale development, as it continues to move through
different harmonic material. Beginning with a short explo-
ration of the pitches around G it quickly finds the diminished
arpeggio which is used through the end of the second stave.
However the appearance of the E-natural sets off a string of
fourths and fifths which fill through the end of the figure.
The continuation of this example sees the fifths replaced by
a whole-tone scale which evolves into chromatics, briefly,
before the augmented arpeggio is discovered. This leads to
an alternation of major thirds with fourths and fifths before
the run was halted.

Models one and two may be creating higher order struc-
tures, however a longer analysis of many scores would be
required to make a conclusive argument. The rapacious na-
ture of the third model, continually exploring new harmonic
spaces, may be a direct result of the policy node formula-
tion. Whenever the weights of the upper layer become too
restrictive, i.e. possibly attempting to force the system into
repeating material, the policy node denies enforcement, al-
lowing the lowest layer to continue exploring freely.

Conclusions
Three variations of a hierarchical NN model were pre-
sented towards the generation of musical improvisations
with higher-level dependencies and structure. All of the
models successfully generated musical material which re-
vealed pattern repetition and manipulation in non-obvious,
yet intelligible fashion. However, evidence of long-term
structure cannot be fully exposed in these short fragments.
Longer examples for evaluation will be made available at
http://ben.musicsmiths.us.
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