
Computational Music Theory

Georg Boenn

Cardiff School of
Creative & Cultural Industries

University of Glamorgan
Pontypridd, CF37 1DL, UK

gboenn@glam.ac.uk

Martin Brain

Department of Computer Science
University of Oxford

Oxford, OX1 3QD, UK
martin.brain@cs.ox.ac.uk

Marina De Vos and John ffitch

Department of Computer Science
University of Bath

Bath, BA2 7AY, UK
{mdv,jpff}@cs.bath.ac.uk

Abstract

One of the goals of the study of music theory is to develop sets
of rules to describe different styles of music. By formalising
these rules so that their semantics are machine intelligible, it
is possible to use computers to reason about and analyse these
rules – computational music theory. ANTONis an automatic
composition system based on this approach. It formalises the
rules of Renaissance Counterpoint using AnsProlog and
uses an answer set solver to compose pieces. This paper
discusses ANTON, presenting the ideas behind the system
and focusing on the challenges of modelling and synthesis-
ing rhythm.

Introduction

Music is an important aspect of all cultures, and forms
an significant part of many people’s lives. Despite this,
and much effort by musicologists and others (for exam-
ple, (Thakar 1990; Huron 2006; Leach and Fitch 1995b;
1995a)), it remains in many ways a mystery.

This paper describes a computational investigation into
the basis of music, applying ideas from logic programming
and artificial intelligence, with the aim of developing a com-
putational theory of music. This incorporates a logical rep-
resentation of some musical components so we can apply
computational techniques.

Our joint aim is to create a system for autonomous mu-
sic composition, but the authors have different perspectives
and motivations. We include composers, algorithmic com-
posers, computer scientists, logicians, performers and lis-
teners. Underlying aims include learning about music and
music theory, demonstrating the simplicity and power of the
logic tools, and the fun of building an innovative program.
All these attitudes have contributed in some way to the over-
all project.

We should stress that the interest is in composition rather
than improvisation, with the ability to consider the whole
work without linear time constraints. We are currently only
considering styles of music that rely on discrete notes and
parts, but fully accept that there are other musical genre to
which this does not apply. Following a brief description of
the language we use, we describe the development of the

Copyright c� 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

basic system and musical style rules. We follow this with
a description of the problems associated with rhythm, our
current solution and a sketch of a putative improved system.
We end with some examples and consideration for future
work.

Background

Our work is predicated on the over-strong axiom that for a
sequence of musical notes to be considered as a piece of
music it must satisfy certain requirements, regardless of the
style of music one considers. These rules often specify the
progression of a melody, both at micro level (the choice of
the next note) and at the macro level (the overall structure).
Others describe the harmony, which arises from the rela-
tionship between the various voices, while others describe
rhythm and the interaction between the various parts in a
composition. A composer will use her/his skill, knowledge
and creativity to provide a euphonious or meaningful com-
position that meets these requirements. We have restricted
our work currently to discrete notes with pitch and duration.

While these rules were developed to guide and support
human composers and to teach generations of aspiring musi-
cians and composers, they can, with the appropriate knowl-
edge representation techniques, turned into a computer sys-
tem that can reason about and apply these rules. Such a
system provides an easy and versatile way for automatically
composing music. Furthermore, provided that the underly-
ing representation mechanism is sufficiently flexible to allow
changes at the level of the individual musical rules them-
selves, it will give the human composer or musicologist a
tool to understand, explore, extend, experiment with the set
of musical rules he is working with. In other words, it cre-
ates the opportunity to study computational music theory.

In this paper we present ANTON v2.0, an extension of
ANTON v1.0 reported in (Boenn et al. 2009). ANTON is
an automatic composition system based on the set of com-
positional rules governing tonal Western music, using An-
swer Set Programming (ASP) (Gelfond and Lifschitz 1991;
Baral 2003). ANTON is Knowledge Representation and Rea-
soning (KR&R) in the truest sense: using the declarative
properties of AnsProlog, the ASP language used in our ap-
proach, one just writes down the rules of music theory and
reason about them. The order of the rules does not matter
unlike some logic systems (e.g. Prolog).

Musical Metacreation: Papers from the 2012 AIIDE Workshop
AAAI Technical Report WS-12-16

27

ANTON v1.0 focussed on melodic and harmonic composi-
tion. This gave ANTON the same capabilities as its competi-
tors such as Strasheela (Anders 2007) and Bol (Bel 1998)
but with more flexibility, more powerful search algorithms
and a more intuitive and smaller code-base. We have now
added rhythm, including different durations of notes across
parts and chords, to the system. The addition of rhythm to
the ANTON v1.0 proved a challenge for both the formalism
and the implementations used by answer set programming.
So in addition to providing a full description of the system,
we also reflect on the use of answer set programming in large
applications like this.

ANTON provides an experimental platform for computa-
tional music theory, offering tools to discover what aspects
of music existing music theory captures and what it does
not. ANTON v2.0 shows that all known aspects of tonal
Western music can easily be modelled in a computational
framework. More generally, it demonstrates that the use of
a ‘off the shelf’ reasoning engine, in this case answer set
solvers, can result in a versatile and powerful algorithmic
composition system that is fast, intuitive and easy to build
and adapt. For answer set programming, the system shows
that the paradigm can be used to model complex problems.
At the same time it also highlights the current modelling
problems and computational bottlenecks.

Elements of ASP

ANTON uses Answer Set Programming (ASP) (Gelfond
and Lifschitz 1991), a declarative programming paradigm
to represent and reason about musical knowledge. While
there are other languages that implement this paradigm (ID-
Logic (Denecker and Ternovska 2008), logic of proposi-
tional schemata (East and Truszczyński 2001)), ANTON
uses AnsProlog (Baral 2003), a logic programming lan-
guage using the answer set semantics, for its encoding. In
this section, we only give a brief overview of the language.
The interested reader is referred to (Baral 2003) for a more
in-depth coverage.
AnsProlog is a knowledge representation language that

allows the programmer to describe a problem and the re-
quirements of the solutions rather than developing the algo-
rithm to find the solutions to the problem. The basic com-
ponents of the language are atoms, elements that can be as-
signed a truth value. An atom can be negated using nega-
tion as failure in order to create the literal not a. We say
that not a is true if we cannot find evidence supporting the
truth of a. If a is true then not a is false and vice versa.
Atoms and literals are used to create rules of the general
form: a ← B, not C. where a is an atom, B and C are
sets of atoms. Intuitively, this means if all elements of B are
known/true and no element of C is known/true, then a must
be known/true., We refer to a as the head and B ∪ not C as
the body of the rule. Rules with empty body are called facts;
the head should always be true. A program is a finite set of
rules.

The semantics of AnsProlog are defined in terms of an-
swer sets – assignments of true and false to all atoms in the
program that satisfy the rules in a minimal and consistent

%% Time steps are given independently for each part

partTime(P,1..TM) :- partTimeMax(P,TM).

%% Each part can only play one note at a given time

%% This is needed so that partial pieces can be supplied.

:- 2 { chosenNote(P,T,NN) : note(NN)}, rest(P,T), partTime(P,T).

%% If we step, we must pick an amount to step by

1 { stepBy(P,T,SS) : stepSize(SS) : SS < 0 } 1 :- stepDown(P,T).

Figure 1: A sample from the ANTON v2.0 progression rules

fashion. A program has zero or more answer sets, each cor-
responding to a solution, or in the case of ANTON, a different
musical piece. The semantics are exploited to produce dif-
ferent musical pieces that do not break rules or provide an
explanation why a piece is not valid.

When used as a knowledge representation and program-
ming language, AnsProlog is enhanced to contain con-
straints (e.g. ← b, not c) and choice rules (e.g. {a, b, c} ←
b, not c). The former are rules with an empty head, stating
that an answer set cannot meet the conditions given in the
body. The latter is a short hand notation for a conditional,
non-deterministic choice; if the conditions in the body are
met then a number of atoms in the head must be contained
in the answer set. These additions are syntactic sugar and
can be removed with linear, modular transformations (see
(Baral 2003)). Variables and predicated rules are also used
and are handled, at the theoretical level and in most imple-
mentations, by instantiation (referred to as grounding).

Most ASP systems are composed of two processes:
grounding and computing the answer sets of the proposi-
tional program with an answer set solver. We use GRINGO
(Gebser, Schaub, and Thiele 2007) and CLASP (Gebser et al.
2007) for these.

Modelling Simple Music

The core of ANTON consists of a collection of files defining
the musical rules for modes, notes, melody, harmony, chords
and note progression. Without the rhythm mode enabled, all
notes are considered of equal length, evenly distributed and
all the notes can be part of a chord.

The simplest rules govern the pitches that can be used1,
and simple definitions of sequence. Some of these rules can
be seen in Figure 1, covering the concepts that a part can
only play one note at a time, that a note is either a pitch or
a rest, and notes last for a duration. There are also rule-sets
defining the major and minor scales and various modes. The
more interesting of these rules define the difference in rising
and falling minor scales; that we can do this easily opens the
possibility to model Indian ragas. We define constraints as
an error state; this allows a diagnostic mode of use where
a putative piece can be tested against the rules. This is de-
scribed in more detail in (Boenn et al. 2008).

Style Rules

The second level of rules relate to the stylistic rules of the
type of music to be written. Our main concentration has

1Currently we are staying within the western musical tradition
of twelve notes in an octave.

28

%% Melodic parts are not allowed to repeat notes

#const err_nrmp="No repeated notes in melodic parts".

reason(err_nrmp).

error(MP,T,err_nrmp) :- repeated(MP,T).

%% Dissonant contour

%% distance between lowest and highest note of melody

%% should not be a dissonant interval

#const err_dc="Dissonant contour".

reason(err_dc).

error(MP,TM,err_dc) :- lowestNote(MP,N1), highestNote(MP,N2),

chromatic(N1,C1), chromatic(N2,C2),

not consonant(C1,C2), N1 < N2,

partTimeMax(MP,TM).

Figure 2: A selection of the melodic rules of ANTON

%% Parts cannot cross over.

#const err_pcc="Parts can not cross".

reason(err_pcc).

error(P,T1,err_pcc) :- chosenNote(P,T1,N1), chosenNote(P+1,T2,N2),

N1 < N2, part(P+1), noteOverlap(P,T1,P+1,T2).

%% Parts can only ever meet at a single point, and this can

%% only happen once. P+1 is OK, because for P,P+N (N>1)

%% to meet have to have P,P+1 meet.

unison(P1,P2,T1) :- chosenNote(P1,T1,N), chosenNote(P2,T2,N),

P1 < P2, noteOverlap(P1,T1,P2,T2).

haveMet(P,T+1) :- unison(P,P+1,T), not haveMet(P,T),

part(P+1), partTime(P,T).

haveMet(P,T+1) :- haveMet(P,T), partTime(P,T).

#const err_cmmt="Parts can not meet multiple times".

reason(err_cmmt).

error(P,T,err_cmmt) :- unison(P,P+1,T), haveMet(P,T), part(P+1).

Figure 3: A few of the harmony rules from ANTON v2.0

been on Renaissance Counterpoint as described by Fux (Fux
1965 orig 1725) and Thakar (Thakar 1990). We allow up to
four parts. Of interest here are the melodic rules, that capture
concepts of tension and release. The coding of these was not
as simple as some other components. This was not on the
account of the language but defining what we meant. Some
experimentation was needed to get them “right”.

Multiple parts means that there must also be harmonic
rules. These include rules that indicate parts do not cross
and have limited unison, as shown in Figure 3.

At our current stage of development the separation be-
tween style rules and basic rules is not always clear. We
hope and intend to codify the rules more carefully so users
can be more selective in what is acceptable. We return to
this in a later section.

The Problems of Rhythm

The earlier versions of ANTON generate multi-part pieces
where the melodic rules governs the sequences of notes, and
the harmonic rules ensure concords. The lacking musical
element was rhythm, which we can think of as sequences of
varying note durations governed by a characteristic metrical
framework (London 2004). The addition of rhythm, the third
component of music, to melody and harmony does introduce
a new level of complexity in the rules, but also requires a
new methodology for expressing rhythmic patterns.

Very little music plays all the notes for the same duration
at the same times. There are simple rhythmic forms like a
waltz or ländler where regular patterns of different lengths
and emphasis are used, to more complex forms like swing
(one part played at a slightly different speed) or syncopation

| 65 67 65 77 76 69 71 76 72 74 76 77

| F G F F’ E’ A B E’ C’ D’ E’ F’

| +2 -2 +12 -1 -7 +2 +5 -4 +2 +2 +1

| (((X X) (X X)) ((X (X X X)) ((X X) (X X))))

Figure 4: The partitioning tree and human readable format
for a Lydian solo composition.

(one part playing different durations to the others).
Rhythm can be seen as the partitioning of a time interval

into a number of simply related subdivisions, and possibly
further partitioning of these subdivisions to some depth. In
practice the divisions are typically equally sized parts. So it
is clear that simple integer ratios are involved. One can or-
der these partitions with the Farey Sequence (Farey 1816).
It has been shown that the Farey sequence can be used as an
analysis tool for rhythm (Boenn 2007). The Farey Sequence
has been known for some time in the area of musical tun-
ing systems2. Its use for rhythmic modelling has not been
fully exploited yet; ANTON v2.0 is the first music applica-
tion for composition where rhythms and musical forms will
be generated on the basis of the principles outlined here. The
Farey sequence of order n, denoted Fn, can defined as the
sequence of reduced fractions in the range [0,1], when in
lowest terms, have denominators less than or equal to n, ar-
ranged in order of increasing size. All music that depends
on an underlying beat or pulsation can be represented using
Fn with the elements denoting the normalised occurrence of
musical events, e.g. note onsets.

As a computational extension of the Farey Sequence, we
use a hierarchical tree of partitions. This is a computation-
ally useful way of constructing a filtered Farey sequence, by
removing unnecessary sub-divisions like for example larger
primes. We have found that for early renaissance music there
are three layers in this partitioning tree: one to represent
the duration of the measures, one for the grouping of beats
into metres and one for the subdivision of beats into indi-
vidual notes and durations. The measure level indicates how
many bars a part will contain and defines the height of the
tree. The metre level defines the metrical structure of a par-
ticular bar and will contain the information on stress, beats
and subdivisions. The metre layer defines the width of the
tree. The subdivision layer groups individual notes together

2For example Erv Wilson’s annotations of tunings used by
Partch (Partch 1979) http://www.anaphoria.com/wilson.html

29

to determine their duration. The further advantage of hav-
ing a tree is that it allows easy access to different metrical
levels (measure, beats, subdivisions) which is vital for the
later additions of rules about impact/resolution and for rules
governing usage of consonance/dissonance.

An example of a partitioning tree can be found in Fig-
ure 4. Each part is divided in a number of measures, these
form the top layer of the tree (rectangles). Each measure is
then divided in a number of beats (diamond shapes), which
control the emphasis of notes within a binary or ternary met-
rical pattern (the weight of shading). The subdivisions, or
notes (circles), of the part are then grouped with respect to
duration and placed within their respective metre. Individual
notes are the leaves of the tree.

While each part has its own, but related rhythm, they do
interplay. In order to apply harmonic rules it is necessary to
relate the different notes in time. Allen (Allen 1983) gives
the thirteen mutually exclusive possible relations between a
pair of intervals (e.g. starting at the same time, meeting,
overlapping, etc.) which can be used to express the relation-
ships between notes.

In ANTON v2.0 we create a partitioning tree, where each
node is a musical interval and the children are equal spaced
subdivisions. The number of children corresponds to the or-
der of the Farey sequence, each of which can be subdivided.
While the code is written to allow any maximum order, for
reasons of efficiency, and providing sufficient variety for our
style of music, we restrict the order to be less than or equal to
3, encoded by possibleExpansion. This filtering pro-
vides us with a sufficiently rich subset of trees (and hence
rhythms) for our musical genre.

The necessity to ground over the entire domain means that
all possible nodes of a tree are instantiated whether they are
needed or not. Since this is inevitable we use a ghost tree
that is expanded to the maximum order, in this case 3, and
label each node either active or not. So branches are rather
pruned than generated. This removes some verification and
is significantly faster. The code uses the present predicate
to indicate active nodes.

As mentioned earlier, the rhythm tree for our style has
three duration levels (measure, metre and subdivisions) with
each having its own set of rules, allowing us to specify stress,
chords and time signatures. While for each part an individ-
ual note duration layer is created, all parts will have the same
structure for the measure and metre layer. Without this con-
straint no consistency in the piece can be guaranteed.

For each part, we have a one-to-one mapping, via the
timeToNote predicate, between the leafs of the associ-
ated tree, the notes, and the timing in the part, such that the
melodic rules and harmonic rules can be applied.

To model the interplay between the various parts, to al-
low the harmonic rules to take effect and to create chords
it is necessary to be able to relate notes across parts, con-
sidering that each part has its own time-line and notes have
different durations. Previously, we mentioned that Allen
(Allen 1983) developed rules to relate pairs of temporal
intervals. In practice these rules are very complex to ex-
press in AnsProlog. The main reason for this difficulty is
that current solvers require programs to be instantiated be-

fore answer sets can be computed. The 13 different rela-
tions over a large domain would result in an extremely large
grounded program which current solvers cannot cope with.
For this reason we have used a simplification of the Allen
intervals, using a single predicate, noteOverlap which is
true if there is any instant when both its arguments are ex-
tant. The noteOverlap predicate combines nine (begins,
contained, overlaps, ends and their converses plus same) of
the different Allen relations. This is are sufficient for the
style of music that we are currently modelling. Coupled
with the simplified tree this creates a realisable method to
encode rhythm. noteOverlap uses two iterations to ob-
tain a more compact grounding in terms of grounded rules
although more atoms are needed.

Just like the encoding for melody and harmony, rhythm
is encoded using error predicates to allow for diagnosis and
debugging.

Figure 5 contains a small selection of rhythm rules. They
have been selected to demonstrate some of the intricacies of
encoding rhythm which is a significantly more complex than
the encoding of the other components. The first rule is part
of the construction of the Farey tree for a particular part.
Its depth is determined by the depth of the various layers.
Note that the measureDepth is tree independent. Each
level has its own set of rules of construction. Figure 5 shows
one for the metre level, showing that the level depends on
the duration depth. To demonstrate the pruning of the fully
expanded ghost tree, a rule was included stating that descen-
dants can only be present if they do not go beyond the ex-
pansion determined for that layer. The following rules show
how timeToNode is encoded using the auxiliary predicate
nodeStep to fully take into account the duration of notes.
The next rule shows that the various musical elements can be
easily accessed through the various layers of the tree. The
rule determines the note strength as determined by the me-
tre layer. The remaining rules show the double iteration of
determine noteOverlap.

To ensure backwards compatability a special rule set,
monorhythmic, was created to provide a default imple-
mentation for noteOverlap stating that two notes overlap
if their time steps match and allowing each note to be part of
a possible chord.

Assemblage

As can be seen from the description above the system has a
number of stages. This is controlled by a collection of Perl
scripts. The first of these, programBuilder.pl, selects
the rules required from the base files and sets a number of
constants such as length of piece, key and time signature.
While in principle one could include all the rules, efficiency
considerations motivate this selection. For example, if one
is writing a duet the rules for trios and quartets just increase
the rule base and hence memory.

The next stage of the process is to ground the rules, and
create answer sets. Each answer set in our application corre-
sponds to a new musical piece that satisfies the rules. Con-
trols exist for how many solutions are required and some
randomness controls to look at different parts of the solution

30

%% Each Farey tree has a given depth

depth(F,MD + BD + DD) :- measureDepth(MD), meterDepth(F,BD),

durationDepth(F,DD).

%% The rules for the meter layer

meterLevel(F,FL) :- depth(F,DE), level(F,FL),

durationDepth(F,DD), meterDepth(F,BD),

FL <= (DE - DD), FL > (DE - (DD + BD)).

%% Only descendants less than the expansion are present

present(F,FL2,ND2) :- expand(F,FL1,ND1,E),

descendant(F,D,FL1,ND1,FL2,ND2),

D < E, possibleExpansion(F,E).

%% Map from nodes to time positions

%% Mapping increments each time a node is present

nodeStep(F,0,1).

nodeStep(F,ND,T) :- not present(F,DLL,ND), nodeStep(F,ND-1,T),

node(F,DLL,ND), durationLeafLevel(F,DLL),

partToFareyTree(P,F), partTime(P,T), ND > 0.

nodeStep(F,ND,T+1) :- present(F,DLL,ND), nodeStep(F,ND-1,T),

node(F,DLL,ND), durationLeafLevel(F,DLL),

partToFareyTree(P,F), partTime(P,T), ND > 0.

%% From this we derive a unique mapping from node to time step

timeToNode(P,1,0).

timeToNode(P,T,ND) :- present(F,DLL,ND), nodeStep(F,ND-1,T-1),

node(F,DLL,ND), durationLeafLevel(F,DLL),

partToFareyTree(P,F), partTime(P,T), ND > 0.

%% Meter strength is created at the first level of the meter layer

nodeMeterStrength(F,MLL+1,ND2,1) :- measureLeafLevel(F,MLL),

node(F,MLL,ND1),

descendant(F,0,MLL,ND1,MLL+1,ND2).

timeToNodeOverlap(P1,T1,F2,ND2) :- timeToNode(P1,T1,ND1),

partToFareyTree(P1,F1),

nodeOverlap(F1,ND1,F2,ND2), F1 < F2.

noteOverlap(P1,T1,P2,T2) :- timeToNodeOverlap(P1,T1,F2,ND2),

timeToNode(P2,T2,ND2),

partToFareyTree(P2,F2), P1 < P2.

Figure 5: A small excerpt from the rhythm rule set of AN-
TON v2.0

space. At present we are searching for a valid solution, not
necessarily the best (see later under future work),

These answer sets are just statements of what is the case.
We supply a further Perl script to interpret these as text, Lily-
pond (Nienhuys and Nieuwenhuizen 2003) input, Csound
(Boulanger 2000) csd files or an internal format for further
processing. This process is shown in Figure 6.

What this does not show is that ANTON can also complete
partial pieces, that the Perl scripts allow for the fixing of
certain notes at defined times or that complete pieces can be
verified. Indeed there are many other options.

In order to make it more accessible to non-technical users
a simple FLTK-based GUI has been created to select the op-

Problem
programBuilder.pl

Solution
parse.pl

Program Answer Sets

Expert Input

Options

LILYPOND

CSOUND

Model

Solve
GRINGO
& CLASP

Interpret

Figure 6: A diagrammatic representation of ANTON

!

!
" "

!
3

"
!

"
#
#$

%
!

"

!
3

!

" !""

!
!

3

"
"

!!
"

!
3"

""
!"

"
"" !
"

"
" "
"
3

"

3!
"""

"
" !"
"
"

$
%

7 "
!
!

!
"

!
"

!
!"

!
!

!!
"

!!
"

!
!

3

" 3

""
"
"

"
"

"
"

"
"

!
""

"
3

!
! "

!! 3

"" ""
$
%

14

!
!"

!
""

!
!

"
"

!

!

"
3

3

"
!
!

!

! "
!

!
!
"

!
"

3

""
"
"

"
"

" "
""

!
! "

!
!!! !!

!
$
%

21

"" "3!

"
"

"

""
"
"

"
"

"
"

!

!

"

"

"

"
"

!
!

!

""

!

"

!"

" ""

"
3

"

!

!

"

"!

!

!
!
!

!$
%

28

"

"

3

"
3

"

"

"

"

"
3

"
""" "
"

"
!
"

"

"

!

3""
!
! "

!
!
"

"
"

"

"
"

!
!
!

" " "

!

!

!
""

" !
"
"

3

"

$
%

35

!

!"
!
!

!
""

! 3 "
""

!
!""

3

""
!
" "

3

!

"
3

"
!

3

"
"" ""

" !
!

"
"

"
"

!
"

"
""

!
"""

3

"
3

"
$
%

42

!
!"

""
"
"

!"
!!

"
"

3

"
!
! ""

!
" !

!
!
"

"
"
" !

!
!!

Music engraving by LilyPond 2.12.3—www.lilypond.org

Figure 8: Extract from Wedding on 2012 6 23

tions, and then run the scripts. An example of its use is
shown in Figure 7.

It should be noted that if the inputs for a piece do not
permit any solution, ANTON returns no answers. This re-
sponse should lead to the operator changing or relaxing the
parameters. Experience has shown that a small number of
measures often leads to no solution, while large numbers
can have large computing time.

Sonic Results

We have not completed a systematic investigation into peo-
ple’s response to the pieces created. Informally it certainly
creates short acceptable music, and at times more than that.
The two commonest output forms are as Csound scores or
Lilypond engravings. A number of audio WAV files can
be found in ANTON’s web site http://dream.cs.bath.ac.uk/
Anton. So pending formal listening tests readers can make
their own decisions. Here we present some examples of the
scores.

Figure 8 shows an extract from a recently completed oc-
casional piece3 with rhythm enabled. The whole piece was
arranged from three different ANTON option-sets, minor and
major sections and the rhythmic ending.

3Full version is at http://cs.bath.ac.uk/jpff/Wedding.html

31

Figure 7: The ANTON GUI in use

We are currently limited to solos, duets, trios and quartets.
In Figure 9 we show a more complex piece in four parts.

Future Work

There are many tasks that wait to be done.
We are acutely aware that we need to make a systematic

listener-based survey of the acceptability of the pieces writ-
ten, and also a comparison with humanly written pieces in
the same genre. We plan to do this soon, but we need to
identify a machine-readable source of comparators, as well
as constructing the necessary web-based survey. Not having
direct access to a music department we will have to rely on
yet another net-based sample of participants.

Our current rule organisation does not make strong dis-
tinctions between special rules and more general ones. We
have sketched an organisation that would allow for more
composer-selection of sets of rules, but this remains to be
done together with a usable interface. There are a number of
similar organisational tasks that could occupy us.

Perhaps the most pressing direction that is needed is to
implement style rules for some other genre of music. We
know of an independent attempt to use ANTON to create
trance music, but in the light of the name4 a collection of
serial rules would be very welcome. Looking at Hindus-
tanni music is also an interesting idea. Codification of such
rules requires the interaction of a suitable musician and a
logic programmer; at least that is how our initial rule-set was
created. We prefer this approach to say a direct machine-
learning one, as the rules themselves are of interest, and per-
mit alternative ways of interpreting them.

4The name came from a short conversation with a mathemati-
cian who opened the conversation with “Who is your favourite
composer of the second Viennese school?”

Elsewhere we have investigated the use of software agents
to perform music(ffitch and Padget 2002), and it would be
good to move these two projects to an integration.

What ANTON can do at present is construct melodic and
harmonic fragments, but it only has rules for local structure.
For example in the composition of the work in Figure 8 an
number of six-measure duets were created and the human
selected and discarded, and added other variations, like a mi-
nor key section. What is clear is that consecutive answer-sets
tend to be similar, and so a weak variation structure appears.
But music has a clearer large scale structure.

We have not solved this difficult global structure problem
but we have a starting point from which we can build a sys-
tem that is hierarchical over time scales; we have a mecha-
nism for building syntactically correct sentences, but these
need to be built into paragraph and chapters, as it were. It
is not clear if this will be achieved within the current ASP
system, or by a procedural layer built on top if it, or some
other scheme such as those of Leach (Leach 1999).

Another significant problem arises in extending rhythm.
The Allen rules (Allen 1983) are more complex than those
we have used, and the numerical nature of these rules is a
challenge to the symbolic logic system. We postulate that a
hybrid system. with AnsProlog calling out to a more tra-
ditionally coded predicate may be necessary. Recent solvers
incorporate such a scheme. Even then there remains much
to do in terms time and rhythm.

An intriguing possible avenue of exploration is to see if
human judgement on resulting pieces can be synthesised
into ASP rules, and so develop some mechanism for aes-
thetic choice – but this is just speculation.

32

!

!

!

!

!

!

!

!

!

!

!

!

! !!

!

!"

$%

$%

$%

$% ! !!

!

!
3

!!
!

!
3

!

!

!

!

!

!

3

!

!

3!

!

!

!
3

!
3

!

!

!

!
3

!!

!

!

!!

! !

!

!

!

!

!

!
!

!

! !
!

!

!

!

!!
!!

!

!

!!

!

!

!

!

!

!

! !"

#

!

!

!

3!

!

!

!

!

%
%
%
%

3

$
$
$
$!

!

! !

!
3

!

3!

3

!

!

! !

!

!

!

!

! !
!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!
!

!

!

%

"

#

%
%
%

5

$
$
$
$

!

!

!

!
3

!
3

!

!

!

!
!

3

!

!

!

!! !

!

!

!

!

!

3!

!

!

!

!

!

!

!

!

!

3!
3

!

!

!

!

!

!

3

!

3

!

!

!

!

!

!

!

!

!

!

3

!

!

!

!
3

!
3

!

!!

%
%
%

"

!

!

!

!
%

7

$
$
$
$! !

!

!

!

!

!

!

!

!

!

!

!

!

!
3

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

Music engraving by LilyPond 2.14.2—www.lilypond.org

Figure 9: Example of a quartet

Conclusions

We have presented progress in automated composition based
on a rule-based system, and shown that it can create accept-
able musical pieces.

The initial system was fairly simple to create; a com-
poser and a logician sitting together defined the foundation
very rapidly. This emphasises our belief that ASP is a good
mechanism for knowledge capture. Developing the reason-
ing rules was a little harder, and required iterations to check
that the concept had been encompassed, composing many
pieces to see if they were as expected.

We have made some progress with modelling rhythm,
but we are aware that our current scheme has limitations,
even if it is acceptable for our current style of renaissance
polyphony. To extend this approach we need to implement
the Allen rules for time relationships, and that will require
some re-engineering in order to be able to use external pred-
icates. Despite the limitations we feel this is a useful way to
model rhythm, and merits further work (Boenn 2011).

ANTON is one of the largest ASP applications currently
reported, and as such has resonance in that community. In-
deed this project is multidisciplinary in all its aspects, en-
compassing a range of areas from musicology, logic and
computing.

In conclusion we wish to stress that this project is open

source and freely available5. We invite anyone who wishes
to use or extend the system, develop new style rules, espe-
cially for genres not in our experience, and/or contribute to
this project of computational music theory, attempting to un-
derstand from a computational aspect what it is that makes
music music.

References

Allen, J. F. 1983. Maintaining Knowledge about Temporal
Intervals. CACM 26:198–3.
Anders, T. 2007. Composing Music by Composing Rules:
Design and Usage of a Generic Music Constraint System.
Ph.D. Dissertation, Queen’s University, Belfast, Department
of Music.
Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press,
1st edition.
Bel, B. 1998. Migrating Musical Concepts: An Overview of
the Bol Processor. Computer Music Journal 22(2):56–64.
Boenn, G.; Brain, M.; Vos, M. D.; and ffitch, J. 2008. An-
ton: Answer set programming in the service of music. In
Pagnucco, M., and Thielscher, M., eds., Proceedings of the
Twelfth International Workshop on Non-Monotonic Reason-
ing, 85–93. NMR2008. Also Tech report UNSW-CSE-TR-
0819.
Boenn, G.; Brain, M.; De Vos, M.; and ffitch, J. 2009. An-
ton: Composing logic and logic composing. In Erdem, E.;
Lin, F.; and Schaub, T., eds., LPNMR, volume 5753 of Lec-
ture Notes in Computer Science, 542–547. Potsdam, Ger-
many: Springer.
Boenn, G. 2007. Composing Rhythms Based Upon Farey
Sequences. In Digital Music Research Network Conference.
Boenn, G. 2011. Automated Analysis and Transcription of
Rhythm Data and their Use for Composition. Ph.D. Dis-
sertation, University of Bath, Department of Computer Sci-
ence.
Boulanger, R., ed. 2000. The Csound Book: Tutorials in
Software Synthesis and Sound Design. MIT Press.
Denecker, M., and Ternovska, E. 2008. A Logic of Non-
Monotone Inductive Definitions and its Modularity Proper-
ties. ACM Transactions on Computational Logic (TOCL)
9(2).
East, D., and Truszczyński, M. 2001. Propositional
satisfiability in answer-set programming. In Proceedings
of Joint German/Austrian Conference on Artificial Intelli-
gence, KI2001, volume 402 of LNAI. Springer Verlag.
Farey, J. 1816. On a curious property of vulgar fractions.
Philosophical Magazine.
ffitch, J., and Padget, J. 2002. Learning to play and per-
form on synthetic instruments. In Nordahl, M., ed., Voices
of Nature: Proceedings of ICMC 2002, 432–435. School of
Music and Music Education, Göteborg University: ICMA.
Fux, J. 1965, orig 1725. The Study of Counterpoint from
Johann Joseph Fux’s Gradus ad Parnassum. W.W. Norton.

5http://dream.cs.bath.ac.uk/Anton

33

Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007. Conflict-Driven Answer Set Solving. In Proceeding
of IJCAI07, 386–392.
Gebser, M.; Schaub, T.; and Thiele, S. 2007. GrinGo: A
New Grounder for Answer Set Programming. In Baral, C.;
Brewka, G.; and Schlipf, J., eds., Proceedings of the Ninth
International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’07), volume 4483 of Lec-
ture Notes in Artificial Intelligence, 266–271. Springer-
Verlag.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 9(3-4):365–386.
Huron, D. 2006. Sweet Anticipation. Music and the Psy-
chology of Expectation. MIT Press.
Leach, J. L., and Fitch, J. P. 1995a. The application of
differential equations to the modelling of musical change.
In ICMC’95: Digital Playgrounds, Banff, Canada, 440–443.
ICMA and Banff Centre for the Arts.
Leach, J. L., and Fitch, J. P. 1995b. Nature, music and algo-
rithmic composition. Computer Music Journal 19(2):23–33.
Leach, J. L. 1999. The Aesthetics of Context-Variant Form.
Ph.D. Dissertation, University of Bath, School of Mathemat-
ical Sciences.
London, J. 2004. Hearing in Time. Psychological Aspects of
Musical Meter. Oxford University Press. ISBN 978-0-19-
516081-9.
Nienhuys, H.-W., and Nieuwenhuizen, J. 2003. Lilypond,
a system for automated music engraving. In Proceedings
of the XIV Colloquium on Musical Informatics (XIV CIM
2003).
Partch, H. 1979. Genesis of a Music. New York: Da Capo
Press.
Thakar, M. 1990. Counterpoint. New Haven.

34

