
Algorithmically Flexible Style Composition
Through Multi-Objective Fitness Functions

Skyler Murray and Dan Ventura
Department of Computer Science

Brigham Young University
skyler.murray@byu.edu, ventura@cs.byu.edu

Abstract

Creating a musical fitness function is largely subjective and
can be critically affected by the designer’s biases. Previous
attempts to create such functions for use in genetic algorithms
lack scope or are prejudiced to a certain genre of music. They
also are limited to producing music strictly in the style deter-
mined by the programmer. We show in this paper that musical
feature extractors, which avoid the challenges of qualitative
judgment, enable creation of a multi-objective function for
direct music production. The main result is that the multi-
objective fitness function enables creation of music with vary-
ing identifiable styles. To demonstrate this, we use three dif-
ferent multi-objective fitness functions to create three distinct
sets of musical melodies. We then evaluate the distinctness of
these sets using three different approaches: a set of traditional
computational clustering metrics; a survey of non-musicians;
and analysis by three trained musicians.

Introduction
Computational music composition is a challenging area of
computational creativity that has spawned a variety of ap-
proaches to the problem of automatic generation of music.
However, music theory comprehends a complexity that is in
some ways difficult to formalize, making the production of
convincing music difficult.

Despite the difficulties, many computational music sys-
tems exist that challenge the perceived limitations of com-
puters. One very successful example is Cope’s Experiments
in Musical Intelligence (EMI) system which can mimic the
compositional style of history’s greatest composers. His
system is so effective that the output is indistinguishable
from the source composers’ own compositions (Cope 2004).
Other examples include Anders and Miranda (2009) demon-
strating an effective method for producing chord progres-
sions that follow established rules and Tanaka et al. (2010)
encoding the rigorous rules of two-part counterpoint into
stochastic models that produce convincing results.

While many successful approaches exist, Genetic Algo-
rithms (GA) offer perhaps the greatest flexibility for produc-
ing varied musical outputs due to the abstract nature of the
fitness function and generality of the genomic representa-
tion. Freitas and Guimaraes (Freitas and Guimarães 2011)

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

show how genetic algorithms can achieve this. Their use
of multiple fitness functions to harmonize melodies leads to
two classes of outputs determined by which fitness function
they weight higher. This leads to convincing harmonizations
that utilized one of two different styles—simplicity or disso-
nance.

Genetic algorithms can be successfully applied to the mu-
sical domain, but implementing an effective fitness function
remains a challenge (Burton and Vladimirova 1999) because
quantifying how good a piece of music is remains largely
subjective—a major hurdle for the domain. Currently the
two most common approaches are human-in-the-loop and
algorithmic.

Interactive Genetic Algorithms (IGA) incorporate human
input as the fitness function but suffer from throughput
issues—the fitness bottleneck (Biles 1994). Music is best
experienced one piece at a time while listening from begin-
ning to end. The time involved in the process makes rat-
ing larger populations through a human evaluator imprac-
tical. Biles’ work (1994) on an evolutionary composition
system—GenJam—produces improvisational jazz lines by
employing interaction with a human rater, and he agrees that
this approach leads to low throughput. He attempts to imple-
ment a neural network (Biles, Anderson, and Loggi 1996) to
overcome this challenge but is unable to produce the same
quality of results achieved by the human rater. Biles’ later
efforts to move away from IGA(Biles 2001) suggest that an-
other approach is desirable.

An automated fitness function increases throughput but
has traditionally limited evaluation quality due to the nar-
row scope of most implemented fitness functions. Whether
the fitness function is designed to look for specific 4-part
harmony rules (McIntyre 1994) or members of the diatonic
scale, the function limits the output’s scope. Because both
human-in-the-loop and programmed fitness functions have
significant drawbacks, a new method is needed—an ap-
proach that avoids the fitness bottleneck and allows for a
more flexible way to escape the programmer’s bias.

We propose a system that addresses these challenges
and allows a genetic algorithm to flexibly produce multiple
unique styles by employing a set of feature extractors. In-
dividual extractors analyze the harmony, the distribution of
rhythms, the overall shape of the lines, self-similarity, rep-
etition and other aspects of the output. A multi-objective

Musical Metacreation: Papers from the 2012 AIIDE Workshop
AAAI Technical Report WS-12-16

55

fitness function then uses a weighted combination of the
feature extractors to produce a fitness score which the GA
uses to drive the evolutionary model. This system produces
distinct musical styles determined by the fitness function
weights.

Related Work
Genetic Algorithms
Genetic Algorithms (GA) (Goldberg 1989; Holland 1975)
are an evolutionary method of optimization. GAs offer a
way to solve complex problems without a specifically tai-
lored search algorithm and a way to overcome the shortcom-
ings of many other often-used optimization algorithms (Deb
and Kalyanmoy 2001).

GAs find a solution through optimization of a fitness func-
tion using a population of possible solutions—individuals.
The individuals are randomly initialized as binary or real-
valued strings that represent an individual’s genome. Their
fitness is measured by the GA based on certain criteria.
The GA choses individuals who will populate a mating
pool. Offspring are produced during the reproduction phase
through a crossover operation. Mutation—random alter-
ations to an individual’s genome—is also possible as part
of the reproduction phase to ensure complete coverage of a
search space. The GA terminates when it reaches a predeter-
mined criterion—often when the population reaches a high
enough mean fitness score (Burton and Vladimirova 1999).
See Algorithm 1.

The wide applicability of GAs (Deb and Kalyanmoy
2001) shows promise for applications in music genera-
tion. Phon-Amnuaisuk, Tuson and Wiggins (1999) give an
overview of many issues to consider when combining GAs
and music, show several examples of successfully using
GAs to harmonize pieces of music and show the necessity
of encoding a great deal of musical knowledge and practice
in the GA operators. Biles calls these musically meaningful
mutations (1994). Without this knowledge it is difficult to
produce meaningful music.

Freitas and Guimarães (2011) demonstrate the power of
using musically meaningful mutations, implementing musi-
cal versions of crossover and mutation as well as methods
that swap notes between measures, randomize chords, and
copy other measures. Their melody harmonization system

Algorithm 1 Genetic Algorithm
Initialize population
while not done do

Calculate fitness for all individuals
Order individuals by fitness
Create probabilistic mating pool of individuals
Create new offspring from mating pool using crossover
operators
Use mutation operator on new offspring
Select subset of offspring and current population as
new population

Output m individuals with fitness > T

creates near human quality harmonizations, showing how
successful GA operators can be when empowered with spe-
cific musical knowledge.

Fitness Functions
At the core of any GA is a fitness function which drives the
evolutionary process by assigning a fitness score to members
of the population. In most GAs this score is used to deter-
mine which members will survive to the next iteration and
produce offspring. Convergence to a useful solution depends
critically on the fitness function’s representation of genomic
quality, but music is an ill-defined concept that is difficult to
qualify precisely.

However, when the scope of the evaluations is limited,
a fitness function can effectively drive a population to con-
verge on quality solutions. Freitas and Guimarães (2011)
use a two-fitness function approach that scores harmoniza-
tion outputs from their system. One function scores the out-
puts based on their simplicity and adherence to common
harmonization rules, the other based on their level of disso-
nance. After many generations of harmonizations, the sur-
viving individuals exhibit traits which are scored highly by
at least one of the these fitness functions, demonstrating how
two different fitness functions enable the generation of two
types of output.

Feature Extractors
Selection of appropriate features for musical representa-
tion facilitates many computational approaches to music
processing in the broadest sense. Examples include Yip
et. al (1999) showing how extracting features from mu-
sic is useful in cataloging melodies; McKay (2004) creat-
ing a successful music genre classification system based on
music feature extraction (with the software later published
an open-source library (Mckay and Fujinaga 2006)); and
Brown (2004) evaluating combinations of musical features
and generative methods for producing aesthetically pleasing
melodies.

Methodology
This paper proposes a new adaptation of previous ap-
proaches to music generation that addresses the fitness bot-
tleneck and the inflexibility of rigidly designed fitness func-
tions. Specifically this approach:

• Uses a set of musical feature extractors

• Drives the evolutionary process with a linear, multi-
objective fitness function that employs the feature extrac-
tors

• Produces music of varying, yet identifiable styles

Genetic Algorithms
Our approach uses variations on several aspects of the tra-
ditional GA while keeping the general algorithm intact (see
Algorithm 1). instead of representing individuals as a bi-
nary string, our implementation use a string of note names.
Larger departures from the traditional GA implementation
involve the crossover and mutation operators, for which

56

we implement musically meaningful operators. The fitness
function implementation is also a departure from common
approaches to music. These differences are discussed in
more detail below.

Musically Meaningful Operators
Many implementations exist in the literature for mu-
sically meaningful operators (Johanson and Poli 1998;
Phon-amnuaisuk, Tuson, and Wiggins 1999; Freitas and
Guimarães 2011; McIntyre 1994; Papadopoulos and Wig-
gins 1998). Many of these approach the problem by
implementing additional operators beyond the traditional
crossover and mutation. However, here we focus on imple-
menting just the traditional crossover and mutation operators
in a musically meaningful way that will enable production of
stylistically varied music.

We implement a standard one-point crossover where the
splitting point in two individuals is randomly chosen be-
tween two notes. We implement mutation as an alteration
to a single note by probabilistically altering its pitch up or
down. These changes to the standard GA operators will al-
low for the mutation and crossover phases of our GA to hap-
pen without significant computational overhead.

Feature Extractors
A set of feature extractors provide the inputs to the fitness
function from which each individual’s fitness score is calcu-
lated. Each feature extractor analyzes an individual I and
computes a function

e : I→ [0, 1]

where I is the set of all individuals (sequences of musical
pitches).

The function output reflects how well that particular fea-
ture is represented in the individual. As a very simple exam-
ple, a feature might compute the percentage of notes from
the musical key of G major, returning the percentage as the
output.

We introduce the following notation that we will use in
describing the feature extractors. An individual I ∈ I is a
sequence of notes, I = i1i2i3...in. An individual note i
can take any pitch value in a four-octave range, with each
value represented as a number in the interval [0, 48], so ij ∈
[0, 48], 1 ≤ j ≤ n.

The feature extractors we implement follow below:
• Self-Similarity: Measures how often repeating interval

sequences occur in I and uses this as a measure of self-
similarity—if the same interval occurs often, the piece is
more self-similar than if many different intervals occur
less frequently.

SelfSimilarity(I) = max

{
1,

2µ

|I|

}
where

µ =
1

|S|
∑
s∈S

counts(I)

and S is the set of all interval sequences of length 2 that
appear in I , and counts(I) is the number of times interval
sequence s occurs in I .

songA4.mid! ! !"!!"#$
!!!!!!! !!!!!

Music engraving by LilyPond 2.14.2—www.lilypond.org

(a) Flat Melody

songA7.mid!" ! !!!!#$
!

!!!!!"!
!!!!

Music engraving by LilyPond 2.14.2—www.lilypond.org

(b) Rising Melody

songA1.mid

! !" !!!!#$!
!!!!!

!
!!"!!

Music engraving by LilyPond 2.14.2—www.lilypond.org

(c) Falling Melody

songA3.mid
! !" !!!!#$!

!!!!!! "!!!!

Music engraving by LilyPond 2.14.2—www.lilypond.org

(d) Top Arc Melody

songA8.mid
! ! !!!"#$ "!

!!!!
"!!

!!! ! !

Music engraving by LilyPond 2.14.2—www.lilypond.org

(e) Bottom Arc Melody

Figure 1: The five types of melody shapes used to parame-
terize the Shapetype feature extractor.

• Melody Shape: A set of five functions parameterized by
a particular melody shape. The melody shape parameter
can take one of five type values: Flat , Rising , Falling ,
TopArc, BottomArc. These shapes are illustrated in Fig-
ure 1.

Shapetype(I) =

(
1− mmax −m

2mmax

)(
1− ε2

ε2 + 10000

)
where m = in − i0 is the overall slope of I , ε is the
the mean squared error (computed using linear regression)

between the shape type and I , mmax =
NoteRange

|I|
and

NoteRange = 49.

• Linearity: Measures how angular the notes in I are. Ap-
proximates the second derivative at each note in I using
the absolute values of the notes to compute the approxi-
mation. α is a smoothing term to adjust how quickly the
linearity approaches 1.

Linearity(I) =
αS(I)2

αS(I)2 + 1

Here, S(I) is an approximation for the second partial
derivative, similar to a Laplacian kernel:

S(I) =
n−1∑
k=2

|βik−1 + κik + βik+1|

• Key Prevalence: 12 functions for each possible key cen-
ter. Measures the proportion of notes from I that represent
that key.

KeyPrevalencej(I) =
|Kj |
|I|

,

where, Kj = {i ∈ I|i ∈ Keyj}, 1 ≤ j ≤ 12, and Key1
is C Major, Key2 is G Major...Key12 is F Major.

• Range of Pitch: Scores how much of the full range of
notes are utilized by I . A score of 0 implies none of the
range used while a score of 1 means the whole range is
used. P (I) calculates the percentage of notes in the four-
octave range covered by I . We use a non-linear scaling

57

factor γ that weights the use of the first two octaves more
heavily than the third and fourth.

PitchRange(I) =
γP (I)2

γP (I)2 + 1

• Interval Class Prevalence: Similar to the
KeyPrevalence() features. Ascending and de-
scending intervals return the same value and intervals
over an octave in size are reduced to their between-octave
equivalent. This leads to 12 separate functions. Here,
0 ≤ j ≤ 11.

IntClassPrev j(I) =

∑n−1
k=1 δ(j, |ik+1 − ik|mod 12)

n− 1

Scoring Features
Because evolutionary pressure maximizes fitness, we re-
quire a way to target any specific feature score (rather than
just driving the population to 1 for any given feature). We
use a wrapper function that compares a target value t to the
value of the feature extractor e(I) and returns a value in the
range [0, 1], with a higher value indicating a better match:

FeatureScore(t, e(I)) =
−1

(x(t)− t)2
(e(I)− t)2 + 1

where

x(t) =

{
1, if t < 0.5

0, if t ≥ 0.5

Multi-Objective Fitness Function
The multi-objective fitness function provides a flexible
framework for producing a variety of musical styles. By
using a linear combination of weighted outputs from the fea-
ture extractors, the multi-objective fitness function biases the
musical outcome, with the weights acting as “preferences.”
Thus,

f(I) =
∑
e∈E

αeFeatureScore(te, e(I))

is a multi-objective fitness function that represents a stylistic
musical preference, parameterized by the set of targets {te}
the set of weights {αe} . Here, E is the set of feature extrac-
tors, the te are the target feature values and the αe weight the
extractors, with each different setting of the weights/targets
corresponding to some different musical style. Note that
there is some interplay between the two sets of parameters
but that they serve different functions. The targets control
the quality of different musical features, while the weights
control their importance.

For example, consider the following function.

f(I) =
2

3
FeatureScore(0.9,KeyPrevalence2(I))

+
1

3
FeatureScore(0.5,PitchRange(I))

This function scores most highly music that makes heavy
use of the key of G major and employs a moderate range of

Algorithm 2 Generator for producing melodies
C = {}
while |C| < 10 do
T = 0.99, bestfitness = 0.0, count = 0
while bestfitness < T do

bestfitness=GA(f)
if bestfitness is not improving then

restart GA
count = count + 1
if if count = 3 then
T = T − 0.01
count = 0

C=C ∪ individual with bestfitness > T
return C

pitches. The key feature is twice as important as the pitch
range feature and no other features are considered at all. Of,
course, non-linear combinations and negative weighting of
features are also also potential representations for musical
styles; however, here we will limit ourselves to the linear,
positive weight case.

The power of this system lies in the variety of fea-
ture extractors—detailed above—and the ability to combine
them in arbitrary ways. With this flexible approach, our sys-
tem has the ability to produce a variety of styles depending
on how features are targeted and weighted. A challenge of
this approach is that the number of feature extractors cre-
ates a complexity that can result in slow convergence times.
This may be ameliorated, to some extent, by placing prac-
tical bounds on the fitness functions. For example, we can
limit the number of KeyPrevalence() extractors that can re-
ceive non-zero weightings.

Results

We used three different multi-objective fitness functions, fA,
fB and fC, chosen so that A and C represent quite differ-
ent musical styles with B representing a similar style to A
(Table 1 gives the target values and weights for the feature
extractors for the three styles). We then generated 10 dif-
ferent melodies for each of the three styles (referred to here
as A0,...,A9, B0,...,B9, C0,...,C9) using Algorithm 2 and a
genetic population of 40 individuals initialized with random
notes in the four octave range. Figure 2 shows representative
examples of each style and all 30 generated melodies may be
listened to at http://axon.cs.byu.edu/styleGeneration.

We then evaluated these three sets of melodies for intra-
group cohesion and inter-group distinction, using three dif-
ferent methods of evaluation: traditional agglomerative
clustering, non-musician survey responses and analysis by
trained musicians. Finally, for all three evaluation methods,
we evaluate the quality of the resulting clustering using four
common clustering metrics: purity, Rand index, F-measure
and normalized mutual information.

58

Style A Style B Style C
Weight Target Weight Target Weight Target

SelfSimilarity 20 0.05 20 0.05 20 0.2
ShapeTopArc 20 0.8 20 0.6 20 0.8

IntClassPrev0 10 0.05 10 0.05 10 0.0
IntClassPrev5 10 0.04 10 0.04 10 0.4

PitchRange 10 0.9 10 0.9 10 0.4
KeyPrevalence2 30 1.0 30 1.0 30 0.4

Linearity 20 0.5 20 0.8 20 0.8

Table 1: Features, weights and targets for three musical styles. Style A features a majority of notes in the key of G Major, uses
a wide range of pitches, conforms mostly to a top arc shaped melody, and is only somewhat linear. Compare with the example
score in Figure 2(a). Style B is similar to Style A with a few differences. It conforms less well to the top arc shape and with
a higher linearity target it features smoother lines with fewer large jumps in opposite directions and more consistent use of the
same interval. Compare with the example score in Figure 2(b). In contrast, Style C has a raised target for self similarity, which
favors music with more frequent and common interval patterns. The changes to the IntClassPrev0 and IntClassPrev5 targets
produce melodies with fewer repeated notes and a predominant use of the Major 4th interval. The reduction in the target score
for pitch range results in a smaller range of notes, and lowering the target for KeyPrevalence drives the majority of the notes
to be outside of G Major. Compare with the example score in Figure 2(c).

songA0.mid ! ! !! !"# $! ! ! !! ! !! ! ! ! ! ! ! ! !!" ! !

! ! !! ! !4

! ! ! !
! ! ! !! ! !" !" ! ! ! !! ! !

Music engraving by LilyPond 2.14.2—www.lilypond.org

(a)

songB9.mid ! !" !! !# $! ! ! !! ! ! !%! ! ! ! " ! ! ! ! !! !

!" ! ! !! ! "4

! ! !! ! ! !!" ! ! ! ! ! ! ! !! ! !"

Music engraving by LilyPond 2.14.2—www.lilypond.org

(b)

songC9.mid !" !" !"# ! ! ! #$ % ! !# !" !!# ! ! !"!" !" ! !" " !# !" !!" !" !

!" ! !" !!" !" "
4

$! ! ! !! !# ! !"!" ! !# !" # !" ! !" !! !" !

Music engraving by LilyPond 2.14.2—www.lilypond.org

(c)

Figure 2: Representative examples of music composed in (a)
style A, (b) style B and (c) style C.

Agglomerative clustering
Agglomerative clustering requires the specification of both
a distance metric and a technique for computing cluster dis-
tances. We used five common distance metrics (L1-norm,
L2-norm, L4-norm, L∞-norm and cosine similarity) and
five common clustering techniques (single linkage, complete
linkage, weighted average, unweighted average and joint
between-within) to compute 25 different agglomerative clus-
terings. All 25 correspond very closely to the three styles
represented by the three multi-objective fitness functions—
six of the clusterings were perfect (L1-norm with joint
between-within and L∞-norm with all five cluster tech-
niques), while the other 19 grouped only two selections (B3
and B4) incorrectly. In addition, styles A and B were con-
sistently clustered together before style C, as expected. See

Figure 3: Agglomerative clustering of results using the L1-
norm with weighted average to compute inter-cluster dis-
tances. Note that at the three-cluster threshold, three dis-
tinct styles are represented that correspond very closely to
the three multi-objective fitness functions use to generate the
selections, with only selections B3 and B4 grouped incor-
rectly. Also note that at the two-cluster threshold, styles A
and B are clustered together and remain distinct from C.

Figure 3 for a representative example dendrogram.

Non-musician survey
We asked non-musician respondents to listen to pairs of
melodies and score their similarity on a scale of 0 to 10.
We also asked them to describe why they scored the pairs
the way they did. Using the similarity scores collected in
the survey, we generated a 30 × 30 distance matrix for all
the melodies in all three style groups. This distance ma-
trix was then used as the distance metric to produce five ad-
ditional agglomerative clusterings using the five clustering
techniques mentioned above.

In this case, the clusterings were much less consistent and

59

did not agree nearly as well with the three generative styles.
There are likely several reasons for this, including the fact
that respondents did not have significant musical training,
the fact that people will naturally perform contradictorily on
this type of task and the fact that the small number of survey
participants means that each distance matrix entry was gen-
erated, on average, from a single response, likely resulting
in an undesirable level of variability in the matrix elements.
Still, even with all of these issues, some of the underlying
structure is still discernible in these human-based clusterings
(see Figure 4).

Several comments made by respondents demonstrate that
in their analyses they were using features similar to those
implemented in the system:

• “The second piece had much more dissonance and half-
steps” (Comparing A7 to C3)

• “Although they had different ranges, both moved very
chromatically” (Comparing C1 to C7)

• “seemed almost like different parts of the same song”
(Comparing B7 to B9)

Of course, other comments indicate that the respondents
were looking at things quite differently (and possibly some-
times reveal a lack of musical maturity):

• “In some ways very similar, but the ending of the second
piece going to a much lower set of notes seemed very dif-
ferent” (Comparing A2 to A6)

• “[The first] was high-pitched, [the second] was low-
pitched.” (Comparing C0 and C3)

• “I felt like they had a similar pattern with how the jumps
between notes.” (Comparing A3 to C1)

• “Similar moving patterns. but first one started low.”
(Comparing A3 to C6)

Musician analysis
We chose a random subset of the 30 melodies: five of stye
A, {A0,A2,A6,A7,A9}; four of style B, {B3,B4,B6,B9};
and three of style C, {C0,C2,C7}; and asked three music
faculty members who routinely analyze music, to cluster the
pieces. Specifically, each faculty member was asked to

1. Listen to and study the scores for each selection
2. Analyze and list distinctive traits for each selection
3. Group the selections into a number of different groups

based on common traits (we did not tell them how many
groups)

4. List the traits that differentiate each group from the others

Musician 1 identified several of the features included in
our system: arch shape, varying range of notes, use of a
particular interval (Perfect 4th), use of repeated notes and
chromaticism; they also identified several other features not
explicitly included in the system: gamelan-like (a traditional
Indonesian music genre), use of higher notes, use of mor-
dents. Their response also offered two different cluster-
ings. The first consists of three clusters and is based on

Figure 4: Agglomerative clustering of results using a dis-
tance matrix constructed from the survey responses of non-
musician subjects with unweighted average to compute
inter-cluster distances. Note that at the three-cluster thresh-
old, there is less agreement with the styles represented by the
multi-objective fitness functions used to generate the selec-
tions. Still, however, each of the three clusters is populated
predominantly by a single generated style: 7/12 style A in
the leftmost cluster, 5/8 style B in the center cluster and 7/10
style C in the rightmost cluster.

attributes of the highest note with the clusters described
as: highest note repeated, highest note not repeated and in
the first three measures, highest note repeated in last four
measures and is composed as follows: {A6,C0,C2,C7},
{A0,A9,B3} and {A2,A7,B4,B6,B9}. The second is
composed of five clusters and is based on attributes of the
lowest note: lowest note repeated, lowest note not repeated
and is first note, lowest note not repeated and is last note,
lowest note not repeated and is second note, lowest note
not repeated and is in first half of melody, and is com-
posed as follows: {C2,C7}, {B3}, {A0,A6,A9,C0}, {A2}
and {A7,B4,B6,B9}. These clusterings differ significantly
from the “ground truth”, but they also share much common
structure.

Musician 2 clustered the songs into three groups, describ-
ing them as follows. Group1 members have a general arch
shape and are mainly tonal in G Major/E Minor; Group2
members have a general arch shape and begin atonally but
settling into tonal sounds by their conclusion; Group3 mem-
bers have a general arch shape, are highly chromatic and do
not sound tonal. The actual clustering given by Musician 2 is
{A0,A2,A6,A7,A9,B9}, {B3,B4,B6} and {C0,C2,C7}.
Note the marked similarity between this clustering and the
“ground truth”, with only a single song placed differently.

Musician 3 clustered based on number and placement of
accidentals, giving five clusters described as: use of acci-
dentals A] and F], use of accidentals C] and F], use of two
other accidentals, use of four accidentals, use of chromatic
scale. The actual clustering, in this case was {A0,A6,B6},
{A2,A9}, {A7,B9}, {B3,B4} and {C0,C2,C7}. Like Mu-
sician 1’s clustering, there are significant differences from
but also much structure in common with the “ground truth”.

60

Cluster quality
Table 2 summarizes the results of evaluating cluster qual-
ity for all three experiments using the four clustering met-
rics (purity, Rand index, F-measure and NMI). First, note
the high quality of the computational metrics—all of the 25
clusterings are very similar (or identical) to the clusterings
induced by the three fitness functions (musical styles).

In comparison, note that, not surprisingly, the quality
of the five clusterings resulting from the survey of non-
musicians was lower and contained more variability. As
mentioned earlier, reasons for this likely include the respon-
dents’ general lack of formal musical training, the inherent
difficultly and subjectivity of the task and the relatively low
number of responses and resulting variance in the generated
distance matrix elements.

Finally, note the relatively better quality of the cluster-
ings generated by the analyses of the trained musicians
when compared with those generated by the survey of non-
musicians. Formal musical training and familiarity with this
type of task do result in measurable gains in cluster quality,
suggesting that what the system produces can be, in fact, rec-
ognizable as distinct musical styles (at least to trained musi-
cians). The musician-generated clusterings do show greater
variability than the computational clusterings; nevertheless,
the results are reasonable, with Musician 2 generating par-
ticularly high-quality clusters, comparable with the compu-
tational models.

Conclusion
We have demonstrated a system that employs a linear multi-
objective fitness function for the generation of disparate mu-
sical styles. We have also presented several different com-
putable musical features that can be incorporated in this
multi-objective fitness function and thus form the basis of a
musical style description. Three qualitatively different eval-
uation methods all confirm that the system can produce dis-
tinct and recognizable styles of music.

While any length of output is possible with our system,
the ability to produce music which would engage an audi-
ence through a significant composition is lacking. The cur-
rent system does not incorporate any global structure, and
techniques that do so, allowing such things as the develop-
ment of a musical theme and the utilization of contrasting
themes would offer significant improvements in the scores
produced.

A major element of music that was omitted from this re-
search is rhythm. Every melody produced by the system has
the same mono-rhythmic element and each feature extractor
ignores the location in the beat structure where notes fall.
Time signature, note placement in a measure and beat all im-
pact the importance and perception of a note, and the system
must be expanded to incorporate these rhythmic elements.

Yet another musical dimension ignored here is the addi-
tion of harmonization and polyphony. The addition of these
complexifying musical elements is non-trivial and will re-
quire significant additional research both in how to properly
incorporate the additional features and in how to mitigate the
computational complexity that will likely result.

Such musical improvements, as well as input from musi-
cal experts (as in our third evaluation) will necessitate the
development of additional feature extractors, e.g. for mea-
suring rhythmic and polyphonic features as well as global
structures, etc.

Finally, and perhaps most significantly, during the course
of this work, we determined the parameters for the fea-
ture extractors, removing much of the creative responsibility
from the system. An important next step is to add an element
of autonomy to the system such that style of composition
is chosen automatically using a meta-level fitness function.
One possible step in this direction would be the automatic
learning of feature extractor parameters from musical cor-
pora. As an ancillary result, this could produce some new
insights into parameterizing various known musical genres.
However, even successful corpora-based parameter learning
is still dependent on the (intelligent) selection of the corpus,
suggesting, perhaps, another way to consider the problem of
meta-level fitness.

References
Anders, T., and Miranda, E. R. 2009. A computa-
tional model that generalises Schoenberg’s guidelines for
favourable chord progressions. In Proceedings of the Sound
and Music Computing Conference.
Biles, J.; Anderson, P.; and Loggi, L. 1996. Neural network
fitness functions for a musical IGA. In Proceedings of the
International ICSC Symposium on Intelligent Industrial Au-
tomation and Soft Computing, B39–B44. ICSC Academic
Press.
Biles, J. 1994. Genjam: A genetic algorithm for generating
jazz solos. In Proceedings of the International Computer
Music Conference, 131–137.
Biles, J. 2001. Autonomous GenJam : Eliminating the fit-
ness bottleneck by eliminating fitness. In Proceedings of the
GECCO-2001 Workshop on Non-routine Design with Evo-
lutionary Systems.
Brown, A. R. 2004. An aesthetic comparison of rule-based
and genetic algorithms for generating melodies. Organized
Sound 9(2):193–199.
Burton, A. R., and Vladimirova, T. 1999. Generation of
musical sequences with genetic techniques. Computer Mu-
sic Journal 23(4):pp. 59–73.
Cope, D. 2004. Virtual Music: Computer Synthesis of Mu-
sical Style. The MIT Press.
Deb, K., and Kalyanmoy, D. 2001. Multi-Objective Opti-
mization Using Evolutionary Algorithms. Wiley, 1st edition.
Freitas, A., and Guimarães, F. 2011. Melody harmoniza-
tion in evolutionary music using multiobjective genetic algo-
rithms. In Proceedings of the Sound and Music Computing
Conference.
Goldberg, D. E. 1989. Genetic Algorithms in Search, Op-
timization, and Machine Learning. Addison-Wesley Profes-
sional, 1st edition.
Holland, J. H. 1975. Adaptation in Natural and Artificial
Systems. Ann Arbor, Michigan: The University of Michigan
Press.

61

Table 2: Quality of clustering results. The first two columns give results for the two different computational agglomerative
clustering outcomes: the case where two songs are placed in the wrong cluster (19/25) and the case where all songs are assigned
to the correct cluster (6/25); the next five columns give results for the five different agglomerative clustering techniques using
the results of the survey of non-musicians as a distance measure; the last four columns report results from clusterings made by
three members of the Faculty of Music (the first faculty member’s responses could be taken two different ways, shown in two
separate columns, M1a and M1b).

Computational Non-musician Survey Musician Analysis
Miss 2 Perfect Single Complete UnWtAvg WtAvg JBW M1a M1b M2 M3

Purity 0.93 1.00 0.43 0.73 0.60 0.50 0.53 0.67 0.83 0.92 0.83
Rand Index 0.91 1.00 0.36 0.65 0.56 0.61 0.58 0.66 0.74 0.87 0.75
F-Measure 0.87 1.00 0.45 0.33 0.45 0.43 0.35 0.43 0.53 0.80 0.43
NMI 0.84 1.00 0.15 0.23 0.18 0.13 0.34 0.42 0.56 0.81 0.60

Johanson, B. E., and Poli, R. 1998. GP-music: An in-
teractive genetic programming system for music generation
with automated fitness raters. Technical Report CSRP-98-
13, University of Birmingham, School of Computer Science.
McIntyre, R. 1994. Bach in a box: the evolution of four part
baroque harmony using the genetic algorithm. In Proceed-
ings of the First IEEE Conference on Evolutionary Compu-
tation, 852–857 vol.2.
Mckay, C., and Fujinaga, I. 2006. jSymbolic: A feature
extractor for MIDI files. In Proceedings of the International
Computer Music Conference, 302–305.
McKay, C. 2004. Automatic genre classification of MIDI
recordings. Ph.D. Dissertation, McGill University.
Papadopoulos, G., and Wiggins, G. 1998. A genetic algo-
rithm for the generation of jazz melodies. In Proceedings
of the 8th Finnish Conference on Artificial Intelligence, vol-
ume 98, 7–9.
Phon-amnuaisuk, S.; Tuson, A.; and Wiggins, G. 1999.
Evolving musical harmonisation. In Proceedings of the In-
ternational Conference on Artificial Neural Networks and
Genetic Algorithms.
Tanaka, T.; Nishimoto, T.; Ono, N.; and Sagayama, S. 2010.
Automatic music composition based on counterpoint and
imitation using stochastic models. In Proceedings of the
Sound and Music Computing Conference.
Yip, C. L., and Kao, B. 1999. A study of musical features
for melody databases. In Bench-Capon, T. J. M.; Soda, G.;
and Tjoa, A. M., eds., Database and Expert Systems Ap-
plications, 10th International Conference, DEXA ’99, Flo-
rence, Italy, August 30 - September 3, 1999, Proceedings,
volume 1677 of Lecture Notes in Computer Science, 724–
733. Springer.

62

