
E N G A G I N G T H E W O R L D

Evolutionary and Dynamical
Systems!

Ollie Bown, Design Lab, University of Sydney!

“Any sufficiently advanced technology is
indistinguishable from magic”
Clarke’s 3rd law

Oliver Bown, Rob Saunders and Martin Tomitsch
Design Lab,
University of Sydney,
Darlington, NSW, 2006

Email: {oliver.bown,rob.saunders,martin.tomitsch}@sydney.edu.au
Twitter: @olliebown, @robsaunders, @martintom, @syd_designlab

oliver.bown@sydney.edu.au @olliebown!

Evolutionary and Dynamical
Systems!

2!

“Any sufficiently advanced technology is
indistinguishable from magic”
Clarke’s 3rd law

Oliver Bown, Rob Saunders and Martin Tomitsch
Design Lab,
University of Sydney,
Darlington, NSW, 2006

Email: {oliver.bown,rob.saunders,martin.tomitsch}@sydney.edu.au
Twitter: @olliebown, @robsaunders, @martintom, @syd_designlab

•  Cybernetics!
•  Artificial Life!
•  Optimisation!

Evolutionary and Dynamical
Systems!

3!

“Any sufficiently advanced technology is
indistinguishable from magic”
Clarke’s 3rd law

Oliver Bown, Rob Saunders and Martin Tomitsch
Design Lab,
University of Sydney,
Darlington, NSW, 2006

Email: {oliver.bown,rob.saunders,martin.tomitsch}@sydney.edu.au
Twitter: @olliebown, @robsaunders, @martintom, @syd_designlab

!
Emergent sources of autonomy?!
!
In contrast to learning systems !
where behaviour is derived from a
corpus.!
!
Inspiration from Sims, Kauffman, !
etc.!

Evolutionary and Dynamical
Systems!

4!

“Any sufficiently advanced technology is
indistinguishable from magic”
Clarke’s 3rd law

Oliver Bown, Rob Saunders and Martin Tomitsch
Design Lab,
University of Sydney,
Darlington, NSW, 2006

Email: {oliver.bown,rob.saunders,martin.tomitsch}@sydney.edu.au
Twitter: @olliebown, @robsaunders, @martintom, @syd_designlab

CA music – Eduardo Miranda!
!
Swarms/dynamic oscillators – !
Impett, Blackwell and Young!
!
Dynamic agents – Magnusson!
!
Chaotic and complex systems -
 Di Scipio!

Evolutionary and Dynamical
Systems!

5!

“Any sufficiently advanced technology is
indistinguishable from magic”
Clarke’s 3rd law

Oliver Bown, Rob Saunders and Martin Tomitsch
Design Lab,
University of Sydney,
Darlington, NSW, 2006

Email: {oliver.bown,rob.saunders,martin.tomitsch}@sydney.edu.au
Twitter: @olliebown, @robsaunders, @martintom, @syd_designlab

Jon McCormack, Eden.!
!
One of a number of !
“ecosystemic” artworks.!

Evolutionary and Dynamical
Systems!

6!

“Any sufficiently advanced technology is
indistinguishable from magic”
Clarke’s 3rd law

Oliver Bown, Rob Saunders and Martin Tomitsch
Design Lab,
University of Sydney,
Darlington, NSW, 2006

Email: {oliver.bown,rob.saunders,martin.tomitsch}@sydney.edu.au
Twitter: @olliebown, @robsaunders, @martintom, @syd_designlab

Uses of evolution:!
!
Interactive!
Targeted!
Exotic!
Novelty search!

Evolutionary and Dynamical
Systems!

7!

“Any sufficiently advanced technology is
indistinguishable from magic”
Clarke’s 3rd law

Oliver Bown, Rob Saunders and Martin Tomitsch
Design Lab,
University of Sydney,
Darlington, NSW, 2006

Email: {oliver.bown,rob.saunders,martin.tomitsch}@sydney.edu.au
Twitter: @olliebown, @robsaunders, @martintom, @syd_designlab

Gen 1!

Gen 2!

+!

Evolutionary and Dynamical
Systems!

8!

“Any sufficiently advanced technology is
indistinguishable from magic”
Clarke’s 3rd law

Oliver Bown, Rob Saunders and Martin Tomitsch
Design Lab,
University of Sydney,
Darlington, NSW, 2006

Email: {oliver.bown,rob.saunders,martin.tomitsch}@sydney.edu.au
Twitter: @olliebown, @robsaunders, @martintom, @syd_designlab

Evolving structure versus evolving behaviour!
!
Evolution as a means for achieving novel complexity in!
hard-to-comprehend systems!

Evolutionary and Dynamical
Systems!

9!

“Any sufficiently advanced technology is
indistinguishable from magic”
Clarke’s 3rd law

Oliver Bown, Rob Saunders and Martin Tomitsch
Design Lab,
University of Sydney,
Darlington, NSW, 2006

Email: {oliver.bown,rob.saunders,martin.tomitsch}@sydney.edu.au
Twitter: @olliebown, @robsaunders, @martintom, @syd_designlab

Palle Dahlstedt, MutaSynth (2001)!

variation on crossover where the amount of genes that are
inherited from each parent can be controlled. What I call
morphing is a linear interpolation on the gene level.

Every operator creates a set of new genomes that can be
auditioned and further bred upon in the interactive process.
Any sound can be stored at any stage in a gene bank, and
the stored genomes can be brought back into the breeding
process anytime, or saved to disk for later use. The parents
used in an operation can be selected from several sources: a
previously stored genome, either of the most recently used
parents, any uploadable sound in the current sound engine
or an individual from the current population (i.e., the
outcome of the last breeding operation).

A genome is really just a string of numbers, of constant
length. Another sound engine would interpret these numbers
differently. This means that a genome is meaningless
without the sound engine it was created for, and it will not
work with any other engine.

It is sometimes useful to be able to prevent a number of
genes from being affected by the genetic operations. For
instance, when certain parameters of a sound (e.g., the filter
settings) is good enough and the user does not want to run
the risk of messing them up in further breeding operations,
she can disable them, and they will stay as they are. If a
gene is disabled, it will be copied straight from the first
parent.

Mutation. A new genome is generated from one parent
sound's genome by randomly altering some genes. A
mutation probability setting controls the probability of a
gene to be altered and a mutation range sets the maximum
for the random change of a gene. Together, these two allow
control of the degree of change, from small mutations on
every parameter to few but big mutations.

Mating (Crossover). Segments of the two parent genomes
are combined to form a new genome. The offspring’s genes
are copied, one gene at the time, from one of the parent
genomes. A crossover probability setting controls the
probability at each step to switch source parent. The starting
parent for the copying process is selected randomly. Each
parent will provide half of the offspring’s genes, on average.
The genes keep their position within the genome during this
copying.

Insemination (Asymmetrical Crossover). For a new
offspring genome (Q), the following process is applied,
based on two parent genomes (P1 and P2): P1 is duplicated to
Q, then a number of genes are overwritten with the
corresponding genes in P2. An insemination amount controls
how much of P2 should be inseminated in P1, and the
insemination spread setting controls how much the genes to
be inseminated should be spread in the genome - should
they be scattered randomly or appear in one continuous
sequence. If the insemination amount is small, the resulting
sounds will be close in character to the sound of P1, with
some properties inherited from P2.

Morphing. A linear interpolation is performed on every
gene of the two parent genomes, forming a new genome on
a random position on the straight line in parameter space
between the first parent (P1) and the second parent (P2).

Manual Mutation. Manual mutation is not a genetical
operator, but still something that affects the current genome.
When the user changes a parameter on the synthesizer, the
program is informed about the change and applies the
change to the corresponding gene in the currently selected
genome. The manual change then lives on through further
breeding. Optionally, the manually changed gene can be
automatically frozen, since a manual change is a strong
decision. Manual mutations allow for the same level of
direct control that the advanced synthesizer programmer is
used to, and makes the method useful to both beginners and
experienced users. Manual mutation may not be possible
with all sound engines, depending on if they transmit
parameter changes via MIDI.

2.2 User Interface
MutaSynth is made to be simple. It is also designed to

give quick responses to user actions, to minimize all
obstacles in the creative process. Currently, the user
interface looks like this:

Fig. 1: The current user interface of MutaSynth.

The display shows a number of boxes representing the

population, the last used parents and the currently selected
genome in the gene bank. The layout is chosen to
correspond to the nine number keys on the computer
keyboard. To listen to any individual from the current
population, the user presses the corresponding number key,
and the parameter interpretation of the genome is sent to the
sound engine. The keys +, -, * and / invoke the different
breeding operators. With these keyboard shortcuts the

http://latham-mutator.com/1987/05/mutator-1/!

Latham, Mutator (1987)!

Evolutionary and Dynamical
Systems!

10!

“Any sufficiently advanced technology is
indistinguishable from magic”
Clarke’s 3rd law

Oliver Bown, Rob Saunders and Martin Tomitsch
Design Lab,
University of Sydney,
Darlington, NSW, 2006

Email: {oliver.bown,rob.saunders,martin.tomitsch}@sydney.edu.au
Twitter: @olliebown, @robsaunders, @martintom, @syd_designlab

Exotic: !
e.g., !
Biles: GenJam, !
Gartland-Jones, Parameter Interpoloation.!
!
Hybrid:!
e.g., !
Bown: Zamyatin!

Evolutionary and Dynamical
Systems!

11!

“Any sufficiently advanced technology is
indistinguishable from magic”
Clarke’s 3rd law

Oliver Bown, Rob Saunders and Martin Tomitsch
Design Lab,
University of Sydney,
Darlington, NSW, 2006

Email: {oliver.bown,rob.saunders,martin.tomitsch}@sydney.edu.au
Twitter: @olliebown, @robsaunders, @martintom, @syd_designlab

Multiobjective functions.!
Fu

nc
tio

n
1!

Function 2!

Evolutionary and Dynamical
Systems!

12!

“Any sufficiently advanced technology is
indistinguishable from magic”
Clarke’s 3rd law

Oliver Bown, Rob Saunders and Martin Tomitsch
Design Lab,
University of Sydney,
Darlington, NSW, 2006

Email: {oliver.bown,rob.saunders,martin.tomitsch}@sydney.edu.au
Twitter: @olliebown, @robsaunders, @martintom, @syd_designlab

Lehman and Stanley. Abandoning Objectives: Evolution Through the Search for Novelty Alone. !
Evolutionary Computation, Volume 19 Issue 2, Summer 2011, Pages 189-223.!

Evolution Through the Search for Novelty

Figure 1: Maze navigating robot. (a) The artificial neural network that controls the
maze navigating robot. (b) The layout of the sensors. Each arrow outside of the robot’s
body in (b) is a range finder sensor that indicates the distance to the closest obstacle
in that direction. The robot has four pie-slice sensors that act as a compass toward the
goal, activating when a line from the goal to the center of the robot falls within the pie
slice. The solid arrow indicates the robot’s heading.

Figure 2: Maze navigation maps. In both maps, the large circle represents the starting
position of the robot and the small circle represents the goal. Cul de sacs in both maps
that lead toward the goal create the potential for deception.

5 Maze Experiment

An interesting domain for testing novelty search would have a deceptive fitness land-
scape. In such a domain, the search algorithm following the fitness gradient may per-
form worse than an algorithm following novelty gradients because novelty cannot be
deceived with respect to the objective; it ignores objective fitness entirely. A compelling,
easily visualized domain with this property is a two-dimensional maze navigation task.
A reasonable fitness function for such a domain is how close the maze navigator is to
the goal at the end of the evaluation. Thus, dead ends that lead close to the goal are
local optima to which an objective-based algorithm may converge, which makes a good
model for deceptive problems in general.

The maze domain works as follows. A robot controlled by an ANN must navigate
from a starting point to an end point in a fixed time. The task is complicated by cul de
sacs that prevent a direct route and that create local optima in the fitness landscape.
The robot (see Figure 1) has six rangefinders that indicate the distance to the nearest
obstacle and four pie-slice radar sensors that fire when the goal is within the pie slice.
The robot’s two effectors result in forces that turn and propel the robot. This setup is
similar to the successful maze navigating robots in NERO (Stanley et al., 2005).

Two maps are designed to compare the performance of NEAT with fitness-based
search and NEAT with novelty search. The first (see Figure 2(a)) has deceptive dead ends
that lead the robot close to the goal. To achieve a higher fitness than the local optimum

Evolutionary Computation Volume 19, Number 2 201

