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•  Cybernetics!
•  Artificial Life!
•  Optimisation!
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!
Emergent sources of autonomy?!
!
In contrast to learning systems !
where behaviour is derived from a 
corpus.!
!
Inspiration from Sims, Kauffman, !
etc.!
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CA music – Eduardo Miranda!
!
Swarms/dynamic oscillators – !
Impett, Blackwell and Young!
!
Dynamic agents – Magnusson!
!
Chaotic and complex systems -
 Di Scipio!
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Jon McCormack, Eden.!
!
One of a number of !
“ecosystemic” artworks.!
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Uses of evolution:!
!
Interactive!
Targeted!
Exotic!
Novelty search!
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Gen 1!

Gen 2!

+!
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Evolving structure versus evolving behaviour!
!
Evolution as a means for achieving novel complexity in!
hard-to-comprehend systems!
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Palle Dahlstedt, MutaSynth (2001)!

variation on crossover where the amount of genes that are 
inherited from each parent can be controlled. What I call 
morphing is a linear interpolation on the gene level. 

Every operator creates a set of new genomes that can be 
auditioned and further bred upon in the interactive process. 
Any sound can be stored at any stage in a gene bank, and 
the stored genomes can be brought back into the breeding 
process anytime, or saved to disk for later use. The parents 
used in an operation can be selected from several sources: a 
previously stored genome, either of the most recently used 
parents, any uploadable sound in the current sound engine 
or an individual from the current population (i.e., the 
outcome of the last breeding operation). 

A genome is really just a string of numbers, of constant 
length. Another sound engine would interpret these numbers 
differently. This means that a genome is meaningless 
without the sound engine it was created for, and it will not 
work with any other engine. 

It is sometimes useful to be able to prevent a number of 
genes from being affected by the genetic operations. For 
instance, when certain parameters of a sound (e.g., the filter 
settings) is good enough and the user does not want to run 
the risk of messing them up in further breeding operations, 
she can disable them, and they will stay as they are. If a 
gene is disabled, it will be copied straight from the first 
parent. 

Mutation. A new genome is generated from one parent 
sound's genome by randomly altering some genes. A 
mutation probability setting controls the probability of a 
gene to be altered and a mutation range sets the maximum 
for the random change of a gene. Together, these two allow 
control of the degree of change, from small mutations on 
every parameter to few but big mutations. 

Mating (Crossover). Segments of the two parent genomes 
are combined to form a new genome. The offspring’s genes 
are copied, one gene at the time, from one of the parent 
genomes. A crossover probability setting controls the 
probability at each step to switch source parent. The starting 
parent for the copying process is selected randomly. Each 
parent will provide half of the offspring’s genes, on average. 
The genes keep their position within the genome during this 
copying. 

Insemination (Asymmetrical Crossover). For a new 
offspring genome (Q), the following process is applied, 
based on two parent genomes (P1 and P2): P1 is duplicated to 
Q, then a number of genes are overwritten with the 
corresponding genes in P2. An insemination amount controls 
how much of P2 should be inseminated in P1, and the 
insemination spread setting controls how much the genes to 
be inseminated should be spread in the genome - should 
they be scattered randomly or appear in one continuous 
sequence. If the insemination amount is small, the resulting 
sounds will be close in character to the sound of P1, with 
some properties inherited from P2. 

Morphing. A linear interpolation is performed on every 
gene of the two parent genomes, forming a new genome on 
a random position on the straight line in parameter space 
between the first parent (P1) and the second parent (P2). 

Manual Mutation. Manual mutation is not a genetical 
operator, but still something that affects the current genome. 
When the user changes a parameter on the synthesizer, the 
program is informed about the change and applies the 
change to the corresponding gene in the currently selected 
genome. The manual change then lives on through further 
breeding. Optionally, the manually changed gene can be 
automatically frozen, since a manual change is a strong 
decision. Manual mutations allow for the same level of 
direct control that the advanced synthesizer programmer is 
used to, and makes the method useful to both beginners and 
experienced users. Manual mutation may not be possible 
with all sound engines, depending on if they transmit 
parameter changes via MIDI.  

2.2 User Interface 
MutaSynth is made to be simple. It is also designed to 

give quick responses to user actions, to minimize all 
obstacles in the creative process. Currently, the user 
interface looks like this: 
 

Fig. 1: The current user interface of MutaSynth. 
 
The display shows a number of boxes representing the 

population, the last used parents and the currently selected 
genome in the gene bank. The layout is chosen to 
correspond to the nine number keys on the computer 
keyboard. To listen to any individual from the current 
population, the user presses the corresponding number key, 
and the parameter interpretation of the genome is sent to the 
sound engine. The keys +, -, * and / invoke the different 
breeding operators. With these keyboard shortcuts the 

http://latham-mutator.com/1987/05/mutator-1/!

Latham, Mutator (1987)!
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Exotic: !
e.g., !
Biles: GenJam, !
Gartland-Jones, Parameter Interpoloation.!
!
Hybrid:!
e.g., !
Bown: Zamyatin!
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Multiobjective functions.!
Fu
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tio

n 
1!

Function 2!
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Lehman and Stanley. Abandoning Objectives: Evolution Through the Search for Novelty Alone. !
Evolutionary Computation, Volume 19 Issue 2, Summer 2011, Pages 189-223.!

Evolution Through the Search for Novelty

Figure 1: Maze navigating robot. (a) The artificial neural network that controls the
maze navigating robot. (b) The layout of the sensors. Each arrow outside of the robot’s
body in (b) is a range finder sensor that indicates the distance to the closest obstacle
in that direction. The robot has four pie-slice sensors that act as a compass toward the
goal, activating when a line from the goal to the center of the robot falls within the pie
slice. The solid arrow indicates the robot’s heading.

Figure 2: Maze navigation maps. In both maps, the large circle represents the starting
position of the robot and the small circle represents the goal. Cul de sacs in both maps
that lead toward the goal create the potential for deception.

5 Maze Experiment

An interesting domain for testing novelty search would have a deceptive fitness land-
scape. In such a domain, the search algorithm following the fitness gradient may per-
form worse than an algorithm following novelty gradients because novelty cannot be
deceived with respect to the objective; it ignores objective fitness entirely. A compelling,
easily visualized domain with this property is a two-dimensional maze navigation task.
A reasonable fitness function for such a domain is how close the maze navigator is to
the goal at the end of the evaluation. Thus, dead ends that lead close to the goal are
local optima to which an objective-based algorithm may converge, which makes a good
model for deceptive problems in general.

The maze domain works as follows. A robot controlled by an ANN must navigate
from a starting point to an end point in a fixed time. The task is complicated by cul de
sacs that prevent a direct route and that create local optima in the fitness landscape.
The robot (see Figure 1) has six rangefinders that indicate the distance to the nearest
obstacle and four pie-slice radar sensors that fire when the goal is within the pie slice.
The robot’s two effectors result in forces that turn and propel the robot. This setup is
similar to the successful maze navigating robots in NERO (Stanley et al., 2005).

Two maps are designed to compare the performance of NEAT with fitness-based
search and NEAT with novelty search. The first (see Figure 2(a)) has deceptive dead ends
that lead the robot close to the goal. To achieve a higher fitness than the local optimum

Evolutionary Computation Volume 19, Number 2 201


