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Abstract

For the purpose of creating a jazz teaching tool in
the open-source Impro-Visor (Improvisation Advisor)
application, we trained JazzGAN, a generative adver-
sarial network (GAN) using recurrent neural networks
(RNN) to improvise monophonic jazz melodies over
chord progressions. Improvising jazz melodies creates
several challenges not addressed by previous genera-
tive adversarial neural networks for music generation,
including (1) frequent and diverse key changes; (2) un-
conventional and off-beat rhythms; (3) flexibility with
off-chord notes. To address these issues, we compare
the performance of several data representations with
JazzGAN and propose the use of harmonic bricks for
phrase segmentation. We define metrics to quantify the
aforementioned issues, compare several data encodings
of rhythm, and show that JazzGAN compares favorably
against Magenta’s ImprovRNN.

I. Introduction

Many deep neural network models for music generation
have been proposed (Johnson, Keller, and Weintraut 2017;
Bretan, Weinberg, and Heck 2017; Yang, Chou, and Yang
2017; Dong et al. 2018; Sturm, Santos, and Korshunova
2015; Yu et al. 2017; Mogren 2016). Of these models, the
majority are based on Recurrent Neural Networks (RNN)
with gating mechanisms such as Long Short-Term Memory
(Hochreiter and Schmidhuber 1997).

While these models are powerful enough to represent uni-
versal Turing machines (Siegelmann and Sontag 1995), their
power creates several shortcomings for creativity. (Zhang
et al. 2017) shows the remarkable capacity of deep neural
networks to memorize their corpus and easily fit to random
noise. For the purposes of constructing a creative music gen-
erator, it is therefore important to understand how much the
model generalizes beyond rote memorizing the training cor-
pus.

In particular, it is not well-understood how different
model structures and data representations determine the mu-
sical traits learned. In part, this is due to the difficulty of
defining a concrete measure for musical quality. Most neu-
ral network models have relied primarily on user studies in
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lieu of a performance metric (Yang, Chou, and Yang 2017;
Bretan, Weinberg, and Heck 2017). While informative to
some extent, these studies lack exact analysis about the gen-
erated music. Furthermore, the time constraints of the stud-
ies limit the number of sampled generations, which may rep-
resent only a fraction of the model’s desirable or undesirable
capabilities.

Our work focuses on training and evaluating JazzGAN,
a Generative Adversarial Network (GAN) that uses RNNs
to improvise monophonic jazz melodies over chord pro-
gressions. Our corpus comes from the Impro-Visor (Keller
2018) collection of transcribed jazz solos. Improvising jazz
melodies to a given chord progression creates several chal-
lenges not addressed by previous GAN models, including:
(1) frequent and diverse key changes; (2) unconventional
and off-beat rhythms; (3) flexibility with off-chord notes. To
address these issues, we compare the performance of several
data representations with JazzGAN and propose use of har-
monic bricks for phrase segmentation. Our contributions are
as follows:

1. We propose several metrics for evaluating musical fea-
tures that especially pertain to jazz music.

2. We evaluate several data representations of rhythm under
these metrics.

3. Using these representations and a novel musical phras-
ing method, we construct GAN-based models for mono-
phonic sequential jazz generation.

4. With the proposed metrics and models, we compare the
effect of different rhythm representations on model gen-
erations.

5. To validate our models, we show that their learned chord
conformity compares favorably against a similar model
(Google Magenta’s ImprovRNN).

II. Background
RNNs and GANs

RNNSs have the capacity to memorize lengthy sequences by
using self-looping or recurrent connections to pass indefi-
nitely a hidden state of features through time steps. However,
a vanilla RNN may suffer from the “vanishing gradient”
problem, in which the feedback gradient used to train the
RNN shrinks exponentially fast with time (Bengio, Simard,
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Figure 1: Illustration of SeqGAN training algorithm from
(Yu et al. 2017). Left: The discriminator D is trained to dis-
tinguish between real and generated sequences. Right: The
generator G is trained by the REINFORCE (Williams 1992)
policy gradient where the final reward signal is provided by

and Frasconi 1994). To remedy this issue, gating cells such
as LSTM were developed as a memory mechanism to save
states through multiple time steps (Hochreiter and Schmid-
huber 1997). As shown by (Zhang et al. 2017), RNNs have
the capacity to memorize lengthy sequences through max-
imizing the log predictive likelihood of each token in the
training sequence given the previous observed tokens. This
presents two problems for sequential generation: (1) creativ-
ity suffers as the generator model rote memorizes the train-
ing corpus; (2) maximum-likelihood approaches suffer from
exposure bias, where discrepancies between training data
and generated sequences may throw off the generation for
future tokens (Bengio et al. 2015).

To avoid the above limitations of a fixed-sized corpus,
we use LSTM-gated RNN GANs (Goodfellow et al. 2014)
trained with the REINFORCE algorithm as proposed by Se-
gGAN (Yu et al. 2017), consisting of (1) a discriminative
neural network D to distinguish given data from real data in
the training corpus, and (2) a generative neural network G
that attempts to produce new sequences that fool D into clas-
sifying generations as real. By training D and G in tandem,
the GAN effectively accumulates new training examples by
using new generations from G to train D. Furthermore, by
priming the generator with random noise, the model is not
limited to the same probability distribution for equivalent
prior information as noted by (Yang, Chou, and Yang 2017).

One difficulty in using GANs to model sequences of dis-
crete tokens is that subtle changes in the generator weights
may not translate to changes in the generator output, reduc-
ing the effectiveness of gradient feedback. Unfortunately,
this problem is not simply remedied by using probability
distributions in place of the tokens, as the discriminator will
immediately pick up on non-extreme distributions. (Yu et
al. 2017) instead propose the REINFORCE (Williams 1992)
algorithm to alleviate difficulties in the gradient feedback of
sequences of discrete tokens by treating the generator as an
agent of reinforcement learning with a real-valued reward.
We adopt their procedure to train our RNN GANS.

Related Work

Four other published GANs for music are SeqGAN (Yu et al.
2017), C-RNN-GAN (Mogren 2016), MidiNet (Yang, Chou,

and Yang 2017), and MuseGAN (Dong et al. 2018). For
the purposes of comparison with another chord-conditioning
model, we also review the ImprovRNN model proposed by
the Magenta Project from the Google Brain team (Google
2018). A brief description of each is provided below.

SeqGAN (Yu et al. 2017) first introduced the application
of the REINFORCE (Williams 1992) algorithm to GANs
generating sequences of discrete tokens. While it was built
mainly for text sequences, we apply the same reinforcement
learning model to music encoded as sequences of discrete
tokens. Because SeqGAN was focused on text sequences, it
used only the BLEU metric (Papineni et al. 2002) to evalu-
ate performance on music sequences, and it incorporated no
chord conditioning.

C-RNN-GAN (Mogren 2016) is the first published GAN
model constructed specifically for (polyphonic) music gen-
eration. It used RNNs and represented notes as real-valued
quadruplets of frequency, length, intensity, and timing. By
using real-valued pitches, C-RNN-GAN can be trained with
standard backpropagation, in contrast to the reinforcement
policy gradient methods used by (Yu et al. 2017). We choose
discrete pitch classes over real-valued frequencies due to C-
RNN-GAN’s difficulty of representing rests and inability to
predict probability distributions of pitch classes. For similar
reasons, we also adopt discrete classes of length rather than
real-valued lengths. C-RNN-GAN used several metrics ap-
plicable to monophonic melodies: (1) scale consistency, (2)
repetition counts, and (3) tone spans. We included these met-
rics in our own experiments. Unfortunately, C-RNN-GAN
had no chord conditioning.

MidiNet (Yang, Chou, and Yang 2017) is a GAN that uses
convolutional neural networks (CNN) for (monophonic)
music generation. Though it used CNNs for G and D, it
could condition on previous bars through a third conditioner
CNN. It could also condition on an accompanying chord
channel consisting of a one-hot twelve-dimensional vector
over the twelve keys plus a major/minor bit. The authors
noted their struggle in getting MidiNet to generate notes be-
yond those in the chord triad. MidiNet evaluated its music
quality through a user study. The public MidiNet repository
only contains a trained model without chord-conditioning,
so we were unable to compare MidiNet against JazzGAN.

The authors of MidiNet published a second CNN-based
GAN called MuseGAN, which used three different sys-
tems of CNN-GANSs and a reverse-CNN encoder to generate
multi-tracks of bass, drums, guitar, strings, and polyphonic
piano. Unlike MidiNet, MuseGAN had no explicit chord
conditioning. However, it offered two metrics applicable to
monophonic melodies: (1) number of used pitch classes per
sequence, and (2) qualified note frequency, defining “qual-
ified notes” as lasting longer than a 32nd note. We include
both of these metrics in our experiments, with a stronger
definition of qualified notes, one eliminating unconventional
note durations such as seven timesteps out of 48, where 48
timesteps represents a whole note.

Due to the difficulty of finding other usable GANs with
chord-conditioning, we compare against Magenta’s pre-
trained ImprovRNN for chord-conditioning experiments.
ImprovRNN uses the same LSTM model as Magenta’s



monophonic MelodyRNN, but also conditions the melodies
on an underlying chord progression. Chords are represented
by both a root pitch class and a binary vector of notes in-
cluded in the chord, allowing ImprovRNN to condition on
more than the 24 basic triads.

One salient feature about these related models is that, of
the few that have chord-conditioning, none have metrics to
measure how well the model adheres to those chords. Our
model is also the first to use discretized sequences with
RNNs in the context of GANs specifically for music gen-
eration.

I1I1. Proposed Metrics

As detailed in the related work section, none of the re-
lated GAN models have metrics to directly evaluate chord-
conditioning. In addition, none of the related GAN models
have metrics to evaluate how the learned model understands
rhythms and beat positions. While these metrics may be of
lesser importance in corpora with few variations in chords
and rhythms, they are essential in evaluating and understand-
ing jazz music. Finally, we note the lack of plagiarism met-
rics in the related works.

We introduce three categories of metrics meant to address
these concerns. Mode Collapse metrics serve as a check
against the phenomenon wherein the GAN generator may
collapse to a parameter setting that always emits the same
output (Salimans et al. 2016). In the context of music gen-
eration, mode collapse of the generator may be observed by
many repeated notes or incoherent intervals and note dura-
tions. Creativity metrics measure the amount of copied se-
quences from the training corpus and the variety within gen-
erated sequences. Chord Harmony metrics evaluate how
well the generated sequences adhere to a given chord pro-
gression.

Mode Collapse Metrics

We use the following metrics to evaluate the general
quality of musical generations. The QR and T'S metrics,
as described below, have been adapted from (Dong et al.
2018). We propose additional metrics (CPR, DPR, OR)
to address concerns of repeated notes and observational bias
in generated rhythms. To see how well the generator model
performs, we compare these metrics on a set of generated
sequences against the training corpus.

Qualified Rhythm frequency (QR): QR measures the
frequency of note durations within valid beat ratios of
{1,1/2,1/4,1/8,1/16}, their dotted and triplet counter-
parts, and any tied combination of two valid ratios. This
generalizes beyond MuseGAN’s qualified note metric,
which only measures the frequency of durations greater
than a 32nd note.

Consecutive Pitch Repetitions (CPR): For a specified
length [, CPR measures the frequency of occurrences of [
consecutive pitch repetitions. We do not want the generator
to repeat the same pitch many times in a row.
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Figure 2: Example of five repeated pitches measured in CPR.

Durations of Pitch Repetitions (DPR): For a specified du-
ration d, measures the frequency of pitch repetitions that last
at least d long in total. We do not want the generator to repeat
the same pitch multiple times for a long time. For example,
three whole notes of the same pitch in a row are worse than
three triplets of the same pitch. We only consider repetitions
of two or more notes.
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Figure 3: Example of repeated pitches that last over two bars
measured in DPR.

Tone Spans (TS): For a specified tone distance d, TS mea-
sures the frequency of pitch changes that span more than d
half-steps. Example: setting d = 12 counts the number of
pitch leaps greater than an octave.

=

Figure 4: Example of a nineteen half-step span measured in
TS.

Off-beat Recovery frequency (OR): Given an offset d, OR
measures how frequently the model can recover back onto
the beat after being forced to be off by d timesteps. For ex-
ample, with a 48-timestep encoding for a bar, we run exper-
iments with an offset of seven timesteps, which corresponds
to no conventional beat position. We define recovery onto
the beat as generating a note on a beat position correspond-
ing to a multiple of an eighth note.
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Figure 5: Bar 2: Off-beat rhythm; Bar 3: On-beat rhythm.

Creativity Metrics

We propose the following metrics to evaluate the creativity
of the model.

Rote Memorization frequencies (RM): Given a specified
length [, RM measures how frequently the model copies
note sequences of length [ from the corpus.

Pitch Variations (PV): PV measures how many distinct
pitches the model plays within a sequence.



Rhythm Variations (RV): RV measures how many distinct
note durations the model plays within a sequence.

These metrics are meant to evaluate how frequently the
model simply mimics the training set contents, and how di-
verse the model generations are. Ideally, PV and RV should
be close to the actual values for the training corpus.

Chord Harmony Metric

We propose the following metric to evaluate how well the
model interacts with the chord progression.

Harmonic Consistency (HC): The harmonic consistency
metric is based on the Impro-Visor (Keller 2018) note cate-
gorization, represented visually by coloration, which mea-
sures the frequency of black, green, blue, and red notes.
Black notes are pitches that are part of the current chord,
green notes (called “color tones”) are tones sympathetic to
the chord, blue notes are approach (by a half-step) tones to
chord or color tones, and red notes are all other tones, which
generally clash with the accompanying chord. The Impro-
Visor vocabulary file defines these categories. We did not
modify the standard file specifically for the current corpus.
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Figure 6: Notes with Impro-Visor coloration.

The HC metric turns on-chord and off-chord tones into
more nuanced categories based on the surrounding context.
This allows us to capture stylistic features such as approach
tones, which are off-chord but resolve in the next note. Ide-
ally, these frequencies should be close to the actual values
for the training corpus.

IV. Comparing Rhythm Representations
Experimental Setup

Our first experiment compares the effect of three different
rhythm encodings on generated outputs.

Time-step encoding: This is the encoding used by (John-
son, Keller, and Weintraut 2017; Google 2018; Sturm, San-
tos, and Korshunova 2015; Yang, Chou, and Yang 2017;
Dong et al. 2018). Instead of predicting durations note-
by-note, the model divides the measure into timesteps and
predicts the pitch at each timestep. Notes are sustained by
repeating pitches for multiple timesteps. Some studies in-
clude an additional attack bit to indicate when repeated
pitches are played again versus sustained (Johnson, Keller,
and Weintraut 2017).

Notably, no published RNN GAN for music has been
implemented with the timestep encoding. For our jazz
corpus, we found that while vanilla RNNs are capable of
learning both the pitch and attack sequences over timesteps,

RNN GANS struggle to learn the attack sequence. We found
that even after pre-training the RNN to generate proper
attack sequences, the GAN unlearns the attack sequences
during adversarial training. This may be due to the relative
sparsity of attacks in sequences over timesteps.

Note duration encoding: This note-by-note encoding trains
the models on sequences over notes instead of sequences
over timesteps, and was used by C-RNN-GAN (Mogren
2016) and SeqGAN (Yu et al. 2017). At each step of gen-
eration, the model simultaneously predicts the pitch and du-
ration of the next note.

The note duration encoding offers two major advantages:
(1) sequences are compressed in length, (2) sparse attack
sequences no longer need to be generated. In particular, se-
quence compression makes it easier for the RNN to recall
past notes without going back through several timesteps. For
example, if the model generates a whole note (equivalent to
48 timesteps), it no longer needs to remember information
from 48 timesteps previously to condition on notes before
the whole note.

One disadvantage of the note duration encoding is that
some rhythms tend to dominate the corpus, meaning that
models are susceptible to the exposure bias of predicting
the same duration (i.e. eighth notes) over and over.

Note beat position encoding: This note-by-note encoding
trains the model to predict each note’s ending beat position.
Note durations can then be calculated as the difference be-
tween ending beat positions.

By predicting a constantly changing beat position instead
of note duration, the model is less susceptible to predicting
the same duration over and over. In particular, this avoids
the exposure bias of proper rhythms. Should the model ever
accidentally go severely off-beat, a beat-position encoding
will be better equipped to recover than a duration encoding.

Network Structure and Training Procedure

Three separate RNN-GAN models were trained with the dif-
ferent rhythm representations. We compare the three models
using the proposed metrics.

Our neural network models were implemented in Tensor-
Flow (Abadi et al. 2016). We used a single LSTM layer of
300 nodes, with a 72-dimension (six octave) shared embed-
ding matrix to encode distinct pitches. To get the genera-
tor past the early stages of outputting noise, we first con-
ducted a pre-training phase in which the generator G is
trained by maximum-likelihood on training sequences. Ad-
herence to the training sequence during pre-training was en-
forced through feacher forcing (Williams and Zipser 1989).
Once the mean likelihood error fell below a threshold, we
switched to training G via the REINFORCE (Williams
1992) algorithm, and training D via the cross-entropy be-
tween the predicted probability and the actual probability
that the sequence is real.

Each model was trained on the same dataset for 1000
epochs with a learning rate of 10~3. We updated D once ev-
ery seven updates of GG, and we froze D during pre-training.
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Figure 7: Left: Sample leadsheet from the corpus. Right: Sample beat-model generation over same chords, primed with the first
four notes of the corpus sequence. [h7 (half-diminished seventh) is an abbreviation for m7b5 in Impro-Visor notation.]

Dataset and Feature Representation

We used the Impro-Visor (Keller 2018) corpus of mono-
phonic jazz transcriptions with accompanying chord pro-
gressions. This collection of 44 leadsheets consisted of about
1700 total bars. A sample leadsheet snippet is given in Fig-
ure 7. Each bar was segmented into 48 timesteps (i.e. twelve
timesteps represents a quarter note) to allow for sixteenth-
note triplet rhythms. Note durations and beat positions were
therefore encoded in a 48-dimensional one-hot vector; the
model was capable of generating any of the 48 classes. The
note pitches in the corpus ranged from MIDI 44 to MIDI
106. We encoded rests as just another pitch class, so there
were 64 total pitch classes.

Each half-bar had a corresponding chord consisting of a
tuple (ckey, cnotes) where ckey denotes a root pitch class
from C to B (one-hot over 0-11) and cnotes denote the ac-
tual notes in the chord (multi-hot from 0-11) starting from
the root key of the chord. In particular, this means that the
chords in the corpus span beyond the 24 basic triads, unlike
in (Yang, Chou, and Yang 2017). To better enable chord con-
ditioning, we transposed the corpus to all 12 keys by shifting
all notes and chords by O to 11 half-steps. After transposing
to the 12 different keys, we ended up with 20,000 bars.

Musical Phrasing with Harmonic Bricks

The term harmonic brick follows the work of (Cork 1988)
and (Elliott 2009). A brick is a chord progression of a few
measures used idiomatically. Common examples of bricks
are cadences and turnarounds, both of which occur in sev-
eral varieties with differing frequencies. Impro-Visor auto-
mates the analysis of bricks from the chord progression in
a leadsheet (Keller et al. 2013). In a previous paper (Keller
et al. 2012), we indicated how bricks could be used as the
basis for creative improvisation. The present paper offers an
additional use of bricks in automating improvisation.
(Bretan, Weinberg, and Heck 2017) show that compelling
music generation models can be developed by combining
small unit sequences to form an overall musical sequence.
We aim to emulate this insight in segmenting based off of
chord sequences. To avoid over-fitting to a whole leadsheet,
we segmented each leadsheet into musical phrases that we
assume to be semi-independent. Due to our choice of a note-
by-note, instead of timestep, encoding, a single bar may not

be enough to capture a significant sequence of notes. So
while (Yang, Chou, and Yang 2017) chose to segment by
bars, we instead segmented by harmonic bricks determined
by the background chord progression. Unlike (Yang, Chou,
and Yang 2017), this segmentation does not limit us to a
fixed look-back length nor does it require new structure to
explicitly condition on past phrases. To generate continuous
sequences, the generator RNN can pass its hidden state from
the end of one phrase to the beginning of the next.

After segmenting into bricks, we preprocessed each se-
quence by eliminating rests from the start and end of the se-
quence. We then enforced that the resulting sequence lasted
longer than half a measure and no longer than four measures.
These constraints cut the number of sequences from 20,000
bars to about 13,000 bricks.

Experimental Results

We follow (Dong et al. 2018) in generating 20,000 se-
quences with each model and then evaluating the genera-
tions with our proposed metrics. We primed each sequence
with the backing chords of a randomly chosen brick se-
quence from the training corpus. Tables 1, 2, and 3 show the
performance of each model on the proposed metrics. In our
experiments, the timestep model did not effectively learn the
attack bit sequence, so we segmented notes by consecutive
pitches. This automatically results in frequencies of 0% for
the timestep CPR and DPR consecutive pitch scores, so we
omit those scores from Table 1.

Bold entries in the table denote which model performed
best on each metric. Metric parameters were chosen to pro-
vide the most information about possible mode collapse.
The models were then ranked by similarity to corpus val-
ues. From the results, we see that the beat position encod-
ing outperformed the other two models in most metrics. In
particular, we see a drastic difference in the OR off-beat re-
covery metric. We discuss the results for each metric below.

Qualified Rhythm frequency (QR):

We calculated the frequencies of note durations within the
valid beat ratios of {1,1/2,1/4,1/8,1/16}, their dotted and
triplet counterparts, and any tied combination of two valid
ratios. All three models generated over 90% qualified dura-
tions, and the timestep model nearly always generated valid



Table 1: Mode Collapse Metrics for JazzGAN

Entries denote mean frequency scores for each model on
each metric. Bold entries denote which model obtained the
best score (closest to the corpus value). Standard deviation
value key: T: < 0.3, 11: < 0.2, T : < 0.1, % < 0.05, **:
< 0.03, * x*x: < 0.01.

QR CPR2 |[DPR24[TSI12 [OR7

Corpus  |0.997%* [0.013* [0.005% [0.001%* [0.97"*
Timestep | 0.999** |- - 0.227T 10.06***
Duration |0.917t |0.1057[0.045T |0.097Tt |0.002***
Beat 0.95™ 10.063* |0.017* |0.026* |0.96***

rhythms. We note that the QR score is inversely correlated
with the RV score, suggesting that models with more diver-
sity in rhythms naturally generate more invalid rhythms.

For comparison, MuseGAN defined their own qualified
note metric encapsulating all durations greater than a 32nd
note. Despite using this weaker definition of qualification,
their best model achieved only 62% qualified duration
frequency. MuseGAN used a bigger timestep division (96
versus our 48) and their corpus had fewer qualified notes
(88.4%). However, our models achieved a smaller gap
between generated frequencies and corpus frequencies. This
discrepancy may be due to MuseGAN’s usage of CNNs,
which must generate sequences in simultaneous chunks, as
opposed to RNNs.

Consecutive Pitch Repetitions (CPR2):

We calculated the frequency of occurrences of two con-
secutive pitch repetitions. While the duration and beat
position models had about 10% or lower frequencies, there
remains a gap between the model and corpus frequencies.
Observations of early training epochs suggest that the GAN
is susceptible to predicting repeated pitches due to the RNN
passing the hidden state from step to step. Future work could
investigate whether CNNs also produce higher frequencies
of repeated pitches; the single-step characteristic of their
music generation suggests that they would not.

Durations of Pitch Repetitions (DPR24):

We calculated the frequency of pitch repetitions of two
or more notes that lasted for at least 24 timesteps, or a
half-note. The corpus has even fewer of these instances,
and so do the model generations. Interestingly, the duration
encoding had higher frequencies for both the CPR and DPR
scores. It is unclear why this would be the case, since both
models are predicting note-by-note.

Tone Spans (TS12):

We calculated the frequency of tone spans greater than
an octave. It becomes apparent that the timestep model
struggled to generate cohesive sequences of pitches, as the
TS frequency was 22%. We suspect that the GAN’s inability
to predict the sparse attack sequence threw off the pitch
predictions as well, since the GAN was trained by a single
reward value per timestep.

Off-beat Recovery frequency (OR7):

We calculated the frequency of times that the model recov-
ered back to a beat position divisible by an eighth note, af-
ter being primed seven timesteps off-beat. To ensure that all
models could keep track of the beat position, we fed the beat
position as a 48-dimensional one-hot feature vector at each
step. The corpus score denotes the frequency of sequences
that had no notes at beat positions divisible by an eighth
note.

As expected, the duration encoding utterly fails to recover
since it had less need to keep track of the beat position
during training. While the timestep model performed
marginally better, it appears that the model was predicting
based off of note duration rather than beat position. The
beat position model achieves a surprisingly high recovery
rate of 96%, nearly matching the corpus score of 97%.
Pitch Variations (PV):

Table 2: Creativity Metrics for JazzGAN

Entries denote mean frequency scores for each model on
each metric. Bold entries denote which model obtained the
best score (closest to the corpus value). Standard deviation
value key: T: < 0.3, T1: < 0.2, 1 f: < 0.1, *: < 0.05, **:
< 0.03, % x*: < 0.01.

PV RV |RM3 [RM4 [RM5 |RM6
Corpus |0.7677[0.32T|- - - -
Timestep | 0.6711|0.2470.497 |0.16T [0.0171 |0fff
Duration |0.797 |0.797 [0.487|0.197 | 0.057TT | 0.017T1
Beat 0.76'"|0.597| 0.85 |0.391 | 0.08' |0.01*

We calculated the average ratio across all sequences of the
number of distinct pitches to the total number of notes in the
sequence. For the timestep model, we evaluate the generated
sequences segmented note-by-note rather than timestep-by-
timestep to avoid artificially increasing the note count. All
models achieved within 10% of the corpus frequency, in-
dicating that they have learned to emulate the corpus variety.

Rhythm Variations (RV):

We calculated the average ratio across all sequences of
the number of distinct note durations to the total number
of notes in the sequence. Again, we segment the timestep
model generations note-by-note. Unlike the PV scores,
the models differ drastically from the corpus frequency of
32%. It is unclear why the note-by-note models would have
increased frequencies relative to the corpus, but we note
that higher RV frequencies correlate with more unqualified
rhythms based on the QR score.

Rote Memorization frequencies (RM):

We calculated the frequency of copied pitch subsequences
of three to six notes from the corpus. The rote-memorization
frequency drops exponentially with the subsequence length,
and the models do not rote-memorize past five notes. We in-
terpret the high memorization frequency for up to four-note
subsequences as indication that the model may be learn-
ing building-blocks for longer sequences, while avoiding
copying longer sequences altogether. This is reminiscent of



the unit selection strategy proposed by (Bretan, Weinberg,
and Heck 2017). Interestingly, the beat position encoding
achieves nearly double the rote-memorization frequencies of
the other models; we are unsure why there would be such a
discrepancy between the note-by-note models. Harmonic

Table 3: Chord Metrics for JazzGAN

Entries denote frequency scores for each model on each
metric. Bold entries denote which model obtained the best
score (closest to the corpus value).

HC Black | HC Red | HC Green | HC Blue
Corpus |0.56 0.06 0.34 0.04
Timestep | 0.41 0.24 0.31 0.04
Duration | 0.44 0.20 0.34 0.03
Beat 0.44 0.20 0.33 0.04
Consistency (HC):

We calculated the frequency of black (chord tones), green
(sympathetic tones), blue (approach tones), and red (clash-
ing tones) notes. The models generate similar frequencies of
green and blue notes as compared to the corpus. However,
they generate about 15% fewer black notes and more red
notes, indicating a slightly worse harmonic consistency than
the corpus. Interestingly, despite the discrepancies in PV, TS,
and RM scores, the models generate much more similar HC
scores. This may be a sign that the timestep model, which
failed the TS metric, may be producing the right pitch keys
but at the wrong octave.

Future work could investigate where the red notes occur
in the beat position of the measure. It is plausible that the
surplus of red notes occurs at the chord change every half-
bar.

V. Comparison with ImprovRNN

Our second experiment compares how well JazzGAN learns
chord conformity compared to Magenta’s ImprovRNN
(IRNN).

Experimental Setup

We use the same experimental setup for JazzGAN as in Ex-
periment 1 with the rhythm representations. We use pre-
trained weights for ImprovRNN as given on the Magenta
repository (Google 2018). The pre-trained ImprovRNN neu-
ral network had several differences with our representation
of music. Many of the sequences in our jazz corpus cannot
be represented with ImprovRNN’s sixteen timestep bar en-
coding, which only allows for beat positions that are mul-
tiples of 16th-notes. Furthermore, it was unclear how to
customize the chord note vectors for ImprovRNN sequence
generation, which limited our usage of the model to the ba-
sic triads. For these reasons, we did not train ImprovRNN
on our jazz corpus.

Experimental Results

We reuse JazzGAN’s HC statistics from the previous ex-
periment. To evaluate the HC metric on ImprovRNN, we
generated 20,000 sequences primed with the backing chords

of a randomly chosen brick sequence from the jazz train-
ing corpus. In lieu of customizing the chord notes for the
ImprovRNN chord vectors, we used the basic triads corre-
sponding to the root keys of the backing chords. This also
allows for a fairer comparison in case the Magenta corpus
may not have included all the varieties of chords in our cor-
pus. Table 4 shows the performance of each model on the
HC metric.

Table 4: Chord Metrics for JazzGAN vs ImprovRNN

Entries denote frequency scores for each model on each
metric. Bold entries denote which model obtained the best
score: higher frequencies are better for all colors except
red.

HC Black | HC Red | HC Green | HC Blue
Corpus |0.56 0.06 0.34 0.04
Timestep | 0.41 0.24 0.31 0.04
Duration | 0.44 0.20 0.34 0.03
Beat 0.44 0.20 0.33 0.04
IRNN 0.39 0.32 0.24 0.03

Harmonic Consistency (HC):
We calculated the frequency of black (chord tones), green
(sympathetic tones), blue (approach tones), and red (clash-
ing tones) notes. ImprovRNN had the highest frequency of
clashing red notes, and the lowest frequency of black chord
tones and green sympathetic tones. This indicates that Jaz-
zGAN may have learned a more sophisticated chord model
than ImprovRNN, as it seems to adhere to the chords better.
It must be noted that ImprovRNN trained on a different
corpus than JazzGAN, and we do not know the HC frequen-
cies for Magenta’s corpus. It is possible that Magenta’s cor-
pus had more clashing tones than our jazz corpus. Nonethe-
less, it is promising that JazzGAN outperforms ImprovRNN
even though it was conditioned on chords beyond the basic
triads.

VI. Conclusion

We have introduced Mode Collapse, Creativity, and Chord
Harmony metrics to better analyze and understand the mu-
sical quality of generated sequences. With these metrics,
we have compared several representations of note dura-
tion, showing the vulnerabilities of duration encodings to
off-beat collapse and the robustness of beat position en-
codings. Furthermore, we have demonstrated the perfor-
mance of JazzGAN’s RNN-based GANs for monophonic
jazz melody generation with chord conditioning in com-
parison to Magenta’s ImprovRNN. Our experiments show
that RNN-based GANSs trained on discretized sequences are
still capable of learning complex chord conditioning and
rhythms. Sample MIDI tracks can be accessed at the Impro-
Visor repository (Trieu 2018).

We hope that future work may utilize the proposed met-
rics to provide insight into other models of autonomous
music generation. For example, while we have compared
the qualified note metric from MuseGAN against our QR
score, it would be interesting to compare other musical traits



learned by CNNs versus RNNs. We also advocate the us-
age of Impro-Visor’s colored note metric as a measurement
of chord conformity. We expect that more metrics will be
needed to tease out the differences between an increasing
variety of musical models.
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