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Abstract

CorpusDB is a system for representing sound files and
associated analysis metadata in a structured format. The
formats and conventions used in conjunction with the
database allow for representation of sound files and
their processed variants; multiple, overlapping, hierar-
chical relationships between sound files and segments
thereof; and connections between sounds, their transfor-
mations, and analysis metadata. The software described
in this paper is a parallel implementation consisting of
SuperCollider classes, Python classes, and a common
data representation of corpora that allows for seamless
sharing of data between the two complementary envi-
ronments. Code examples and listings of multi-step al-
gorithms are included that demonstrate the kinds of op-
erations possible within this system.

Introduction
CorpusDB is a software tool for concatenative and data-
driven sample-based sound synthesis inspired by techniques
from Music Information Retrieval (MIR). CorpusDB actu-
ally consists of two implementations of the same software:
one in SuperCollider/sclang (McCartney 2002) and one in
Python using SuperCollider’s scsynth as its sound engine,
plus a common Javascript Object Notation (JSON) data for-
mat that enables the sharing of metadata across the two
implementations. There are several reasons to create and
maintain a software project that includes separate implemen-
tations of the same functionality. First, each platform has
its particular strengths: SuperCollider is better for live per-
formance applications and sound design prototyping, while
Python is suited for batch mode and other offline processes.
SuperCollider provides sclang, a rich language with many
built-in musical idioms. Python allows a programmer to link
a program based on CorpusDB to other libraries, including
Numpy (Oliphant 2006), Matplotlib (Hunter 2007), machine
learning libraries, and others.

Following a very brief overview of concatenative synthe-
sis, we present the system, design decisions, and features
that relate to representing music and sonic relationships in
a database. Various access functions are presented as vi-
tal tools capable of translating stored sounds into meaning-
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ful abstractions of sonic or musical material, plus several
search tools that allow for similarity-based search with cer-
tain constraints. Finally, we demonstrate the power of nu-
merical analysis applied to compositional materials and in-
corporated into the compositional process.

Concatenative Synthesis
Corpus-based concatenative synthesis (CBCS) is a synthe-
sis process where units–segments of sampled sound files–are
arranged in sequences much like tiles or shingles. The cor-
pus refers to a collection of sounds and accompanying meta-
data that allows for the manipulation of these units as ab-
stractions of sound and data. Plunderphonics (Oswald 1999)
and granular synthesis are immediate ancestors of CBCS.
During resynthesis, as the lengths of units are decreased and
the number of overlapping units is increased, the resulting
sound approaches that of a granulation effect.

Concatenative synthesis has existed as a tool for com-
posers for more than a decade. Diemo Schwarz has produced
two overviews (Schwarz 2006; 2007), and other systems
such as SoundSpotter (Casey 2009) have been described.
Furthermore, MIR-inspired tools for large-scale automated
compositional tasks have been described (Collins 2012;
Eigenfeldt 2011). Each system imposes certain working
methods, limited in some respects by the specific features
they implement. For instance, SoundSpotter does not impose
any structure on the sound corpus; it simply allows for sim-
ilarity search within a large collection of pre-analyzed tiles.

Overview of CorpusDB
CorpusDB represents sounds and certain relationships
among a collection of sounds. This representation is used
to both categorize and compare those sounds or segments
thereof. Two basic code objects are used to represent sound
files and segments: tree/node structures and units.

A sound file is associated with a sampler node
(SamplerNode). Each sampler node is linked with a
SuperCollider synthesis object (Synth) that plays the sound
file from disc. Accordingly, effects nodes (EfxNode) are
defined by a Synth that further processes the sound from a
linked sampler node. Transposition is considered within this
system as a component or characteristic of the parent file,
not a transformation. Parent-child relationships (Figure 1)
are formed between sampler nodes and effects nodes; there
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Figure 1: Parent and child nodes.

can be parent nodes with no children, but there are no free-
floating child nodes. Each node contains a recipe for recre-
ating the associated sound.

Given trees of sound-producing nodes, analysis metadata
is represented in the form of units. Each unit defines a link
between a segment of a sound file node and its metadata.
The majority of the data is collected automatically or as the
byproduct of dividing a sound into units. There is a tag cat-
egory that allows the user to mark up each unit in a corpus
with an integer that can identify some user-specified aspect
of the underlying data. An example of the use of this tag
information is included below.

The relationships between parent and child nodes are en-
coded directly in the unit table for a corpus: a unit with
matching parent ID and sound file ID is a parent node,
whereas a unit with differing values is easily identified as
a child or effects node. These child nodes carry references
to their parents, so that their sound processing chains can be
reconstructed by connecting nodes. The depth of the tree is
currently limited, so that there can be no children of chil-
dren.

Corpus units contain only integers and floating point num-
bers, and are meant to be useful for large-scale numeri-
cal processing. Each unit in a corpus contains information
identifying its source sound file, transposition, duration, as
well as the analysis metadata. Multidimensional raw anal-
ysis data (Mel-frequency Cepstral Coefficients or MFCCs)
collected per-frame are averaged over a segment comprised
of multiple frames. Parametric data–that is, data with a sin-
gle value per frame–is stored as several statistical measures
over the whole segment: mean, max, initial and final values,
and the slope from initial to final value. In the current ver-
sion, amplitude–actually, spectral power–parametric data is
collected. Overall, just two tables are maintained: the sound
file tree and the corpus-wide list of units.

Access to Corpus Data
The entire collection of segmented and analyzed sound file
units is available in a variety of forms. Depending on the
needs of the user, a corpus can be indexed globally, relative
to sound files, or relative to user-specified groupings or crite-
ria. Global access to metadata is possible as both a mapping
between integer indices and metadata rows, or in a tabular
format.

These table views (Figure 2) can be limited by types

Figure 2: Corpus unit row.

of metadata: all columns, just the index (or identifying)
metadata, just the amplitude metadata, or just the MFCC
metadata. Using the index metadata, access can be con-
trolled so that only units meeting certain requirements are re-
turned. For instance, one might construct a query that returns
only untransposed units (units with a transposition value of
1.0) that do not come from the same sound file. This can
be accomplished in a variety of ways: through the use of
list comprehensions, sclang list functions, Numpy’s search
functions, etc. Access filters of arbitrary complexity can be
chained together, and the results can be stored for future use.
Furthermore, introspective methods may be used to control
the quality of the data returned. For example, sets of units
returned may be subject to a minimum size requirement,
should the user require a certain minimum number of in-
termediate results to pass on to further stages of processing.

One important access-pattern bears special mention. It is
possible to tag units with integers that identify them in some
way. It is left to the user to define categories or some other la-
beling scheme. One possible example involves tagging units
as head, body, and tail units. A head unit is the first unit from
a sound file or those units identified as containing attacks of
sounds. A tail unit is the last unit of a sound file or those
units which precede units tagged as attacks in sound files
with multiple sonic events. By virtue of not being a head
or tail, all other units are labeled as body units, as Figure
3 shows. This tagging scheme allows for the grouping of
sounds so that a search amongst a group of tail units returns
a tail unit. This mitigates a situation where a unit tagged as
an attack potentially returns matches that do not contain at-
tacks, and likewise, matches for body or tail units do.

Since units can be tracked as lists of integer indices, it
is easy to create multiple, overlapping groupings of units,
either on demand or offline. These groupings of units are
simple abstractions of sound material. This also means that
audio segments are always referred to symbolically, reduc-
ing computational complexity and memory requirements.

Figure 3: Tagging units.

109



Searching Corpus Data
Once sound files are analyzed and segmented, the resultant
metadata is accessed in order to perform a range of tasks.
The user can execute a series of modular operations in or-
der to search, rank, reorder, swap, and otherwise manipu-
late sounds as segments or tiles. The targets for these search
steps are metadata from units, sequences or collections of
units, or even virtual representations of units (e.g., the mean
MFCC values over a combination of several actual units).
New unit sequences are created based on existing sequences,
via search protocols that may be designed with many differ-
ent combinations of and variations on the following steps:

1. Group, filter, and partition units (see above).
2. Select a target unit or sequence.
3. Search by similarity (with optional weighting).
4. Re-rank, filter, or limit the number of results.
5. Reject results based on heuristics or analysis of results.
6. Represent the results in some form, either symbolically or

as resynthesized audio.

The selection of a unit or sequence of units to act as targets
for search, itself a significant choice, is left to the user. A
sequence of units can, and often does, correspond to a real
series of segments in a sound file or the results of a previous
substitution operation, although extensions to this method
are discussed below. It is possible to chain together a series
of searches for a unit similar to a target, using the resulting
unit as the target in each subsequent search. This is very
similar to classic concatenative synthesis, implemented in
a number of ways, notably in CataRT.

Selection and Search
Search-by-similarity, as currently implemented in
CorpusDB, is measured using Euclidean distance be-
tween MFCC data. Since the SuperCollider version is
focused on real-time use, KDTree (Stowell 2013), a plugin,
is useful for basic search-by-similarity. Various offline
comparison functions are included as part of a Python class.
These Python functions utilize Numpy for computations
involving large sets of numerical data. Since both versions
allow for the caching of search results, this allows for one-
time calculations of nearest neighbors and the mapping of
each unit to a limited number of nearest units. The limiting
number functions as a cap on the potential connections
made between units within an analyzed corpus.

Search may be performed based on weightings or mask-
ings of certain channels of search metadata. For instance,
search may be simplified by assigning higher weights to
the first few channels of MFCC data. Masking channels, by
completely stripping the same channels from both the target
unit and potential matches, serves to reduce the dimension-
ality of the data involved and can increase computational ef-
ficiency. Figure 4 demonstrates a series of simple operations
using sclang.

The ability to cache search results and store the resultant
rankings lends itself to weighted random selection. The dis-
tances of the nearest units may be used directly, or the rank-

1 // a particular target unit
2 ˜targetUnit = mycorpus.cuTable[223];
3

4 // all units not labeled as heads or tails
5 ˜unitGrouping = mycorpus
6 .convertCorpusToTaggedArray(tag:0);
7

8 // calculate an array of weights
9 ˜weights = [1, 0.98, 0.96, ...];

10

11 // return the ten closest units
12 ˜result = mycorpus.findNNearestWeighted(
13 targetUnit,
14 unitGrouping,
15 weights,
16 n:10);

Figure 4: sclang code for finding similar units.

1 # Create a pool of MFCC data for units
2 # with tag 0.
3 unitdata_pool = myCorpusDB
4 .convert_corpus_to_tagged_array(
5 ’M’,
6 tag=0)
7

8 # Select random unit to serve as a target.
9 pool_size = unitdata.shape[0]

10 index = random.randint(0,pool_size)
11 target = unitdata_pool[index]
12

13 ct = CorpusTracker(myCorpusDB)
14

15 # Return the ten closest units to the
16 # target unit.
17 nearest_ten = ct.rank_units_by_euc_dist(
18 target,
19 unitdata_pool,
20 depth=10)

Figure 5: Python code for performing ranked search.

ings from closest to furthest may be mapped to a correspond-
ing series of weights. Utilizing weighted random selection,
the nearest unit to the target is more likely to be chosen
than those further away. Furthermore, the rankings and/or
the weights might be stored and tracked as part of a dynamic
selection model where those rankings are adjusted after ev-
ery search. Numpy and other libraries provide tools to work
with large sets of unit data. The code in Figure 5 demon-
strates search using Python similar to the above sclang ex-
ample.

Re-ranking, Filtering, and Limits on Search
Results
Once a series of nearby units has been gathered, a subse-
quent ranking made based on a distinct criterion may be used
to reorder the units. The re-ranking step refines the results
of the first search, which is based on matching similar ma-
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terial. It is different from weighted random selection, in that
it re-ranks based on criteria independent, or partially inde-
pendent, of the original distance measure. This re-ranking
step is an intuitive way to force a search algorithm to make
perceptually relevant decisions. For instance, if the original
selection is based on timbre similarity, a re-ranking based
on the average power values of the similar segments can be
designed to favor those with amplitudes similar to the target
unit’s and thus more amenable to insertion while minimizing
discontinuity (see the above discussion of tagged units).

A simple filtering of all units whose power is lower than
the target’s (or below an appropriate relatively lower thresh-
old) will leave only those units that can be substituted with
a minimal amount of attenuation (or amplification) to match
the power of the target unit. This extension is inspired by
previous work (Maestre et al. 2006) specifically aimed at
segmentation of a corpus of prerecorded monophonic instru-
mental recordings, using the sounds’ amplitude envelopes to
guide concatenation. It must be stressed that the ordering of
the various phases of grouping, search, ranking, and general
post-processing is fairly open-ended and modular. The fil-
tering of units according to power may happen as part of the
formation of pools of potential matches before search.

Multiple searches, with the results averaged or subjected
to a majority-voting scheme, are possible. More generally,
filtering and limiting of the number of results may be per-
formed at any step. This last procedure, limiting the number
of results, is optional, but for practical purposes should be
performed when finally returning results or in intermediate
steps. It may be difficult to know how many results to retain;
it is left to the user to determine a workable limit.

Complex Search Example
In order to illustrate the use of several selection and search
functions, a more involved example is in order. While this
algorithm should return useful results, given sufficient num-
bers of units with compatible metadata, this example is pri-
marily meant to show a multi-part search process. The fol-
lowing steps can be coded (see Figure 6) in either version of
the software:

1. Divide corpus into sub-corpora based on transposition
values (line 1).

2. Select a sound file to be the target (line 8) and iterate over
each of its units (line 13).

3. For each unit, search for the nearest unit, searching only
among the sub-corpus with the same transposition (line
15).

4. Limit the results of each search to the top 1000 hits after
ranking by calculated Euclidean distance (line 18).

5. Reorder those results based on the differences between
each result and the target unit’s amplitude (line 20). Filter
out any units with power, as averaged over the segment,
more than 3 dB below the target’s (line 24).

6. Collect the results of this re-ranking (line 28).

These results are stored for each unit in the sequence, and
a map from target units to corpus units is created. This map-

1 all_transp_0_5 = ct.all_transpositions(0.5)
2 # ...
3 # all units with transp 0.5 are in our pool
4 mfccs_transp_0_5 = mfccs[all_transp_0_5]
5 amps_transp_0_5 = amps[all_transp_0_5][:,0]
6

7 # assume sound file 35 has transp = 0.5
8 sf_35_units = ct.all_of_sf(35)
9 sf_35_mfccs = mfccs[sf_35_units]

10 sf_35_amps = amps[sf_35_units]
11

12 result = []
13 for i,mfcc_row in enumerate(sf_35_mfccs):
14

15 ranked = ct.rank_units_by_euc_dist(
16 target_mfccs = np.atleast_2d(mfcc_row),
17 pool_mfccs = sf_35_mfccs,
18 depth = 1000)
19

20 reranked = ct.rerank_units_by_amp(
21 target_amp = amps_transp_0_5[i],
22 pool_amps = amps_transp_0_5[ranked])
23

24 filtered = ct.amps_greater_than(
25 subset_ids = reranked,
26 threshold_unit = int(sf_35_amps[i,0]))
27

28 result += filtered

Figure 6: Python code for complex multi-stage search.

ping of units in a sequence to similar units from a (sub-
)corpus can be used to create similar sequences of units
and thus comprises a particular way of producing remapped
sound files or variational edits. This is just one example of
how several of the above steps are combined. Most of the
above steps are facilitated by specific functions implemented
in both variants of CorpusDB. Of course users are free to
adapt their own functions or create new functions that fulfill
specific requirements.

Further extending the power of CorpusDB
The above sections outline the basic components of
CorpusDB and their use in building musical or composi-
tional work flows. There are further extensions of the basic
functionality of CorpusDB that may be applied to the pro-
cess of creating new series of sonic tiles.

Searching on Sequences of Units
When more than one target unit is used, the target unit be-
comes a sequence. The Python version of CorpusDB in-
cludes an implementation of a search function that searches
for one anchor unit as in Figure 7, and then re-ranks results
based on user-specified, variable numbers of neighboring
units. This is but one possible algorithm that would search
based on sequences. Furthermore, the algorithm allows the
user to specify a variable swap region: the units on which
search is based do not have to be the only units that are
swapped in for the target units.
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Figure 7: Search based on unit sequences.

The author has found that the results of a mapping from
targets to corpus oftentimes over-represents some units in
the corpus. These well-connected units are heard in result-
ing substitutions, and the ear can become attuned to the rep-
etitions and familiarity caused by hearing them more often
in the results. This situation can be remedied by a post-
processing phase where the results lists are compared as a
group. Those units with a high rate of occurrence as poten-
tial matches are assessed a selection penalty (in a weighted
scheme) or removed altogether. This step will inhibit the se-
lection of over-represented units, and, as a corollary, pro-
mote the relative representation of units with lower overall
connectivity within the corpus.

Statistical Analysis and Views of Units
The observation that units are likely to be less than uni-
formly distributed within a corpus or subset thereof, leads
to a desire for analytical tools to inspect the results of a
search and view the relative distribution of units that com-
prise some grouping, or to view the general connectivity of
the corpus. Both implementations of CorpusDB, but espe-
cially the Python version, have functions that allow for the
introspection of corpora and other groupings of units.

It is easy to view units in terms of their relative connec-
tivity, as based on timbral features. Using Numpy and Mat-
plotlib, the Python version can be used to produce a distance
or similarity matrix (Figure 8) that shows the relative dis-
tances from each unit in the corpus to every other unit. This
example shows a corpus made up of two source sound files,
which can be seen in the graphic. Simple statistical analy-
sis will reveal the means and variances across each channel
of multidimensional data. This statistical data can be used
in the search process to normalize distance functions so that
channels with large variance do not dominate channels with
relatively narrow ranges of values. While much of this anal-
ysis is possible using the sclang version, Python’s libraries
for numerical computation, graphing, and visualization are
superior and easier to use.

Using Metadata to Drive Resynthesis and
Resampling
The results of search algorithms are lists of unit IDs that
correspond to segments of sound files. One must reconstruct
or, in the case where sequences of noncontiguous sound file

Figure 8: Similarity matrix.

segments are derived, construct sound files by sampling the
appropriate files based on timing data and metadata, identi-
fying which file to use for each specific unit. It is straight-
forward to assemble the appropriate data and create audible
results of a swapping or remapping operation:

1. Gather a list of unit indices and convert that list into unit
metadata.

2. Iterate over that list and convert unit sequences that map
contiguous segments within the original sound files to
segments with onsets, durations, and sound file names.

3. Loop over the assembled segments.

4. Pass each consecutive segment to a synthesis object(s)
that renders the sound. Compose the signal chain for par-
ent sound file nodes and child or transformed nodes by
properly instantiating synthesis modules and connecting
audio buses.

5. Wait for the duration of each segment.

Using either version of CorpusDB, it is easy to implement
a function to perform the reconstruction offline and save the
result to disc. This method can allow for the rapid creation of
multiple variations on a target sound file. The SuperCollider
version includes functionality for online or real-time assem-
bly of sound tile sequences. Both versions include example
code for assembling audio segments for playback.

Conclusion
This paper demonstrates several use-cases and applications
of the methods included as part of CorpusDB. The user is
left to construct organization and analysis algorithms com-
posed of these methods that utilize the particular structure
of a CorpusDB instance in order to accomplish the de-
sired musical goals. CorpusDB’s open-ended and modu-
lar design is intended to serve as the starting point for di-
verse algorithmic procedures including composition, anal-
ysis, exploration, etc. CorpusDB is open source software
available from github.com/kitefishlabs/CorpusDB (Python
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project) and github.com/kitefishlabs/cbpsc (SuperCollider
sclang project).
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