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Abstract

The word ‘autonomy’ is often used in the discussion of
software-based music-generating systems. Whilst the term
conveys a very clear concept – the sense of self-determination
of a system – attempts to formalise autonomy are at an early
stage, and the term is subject to a range of interpretations
when practically applied. We consider how the evaluation of
music-generating systems will be enhanced by a clearer un-
derstanding of autonomy and its application to music. We dis-
cuss existing definitions and approaches to quantifying au-
tonomy and consider, through a series of examples, the in-
formation that is required in order to make precise formal
judgements about autonomy, and the identification of rele-
vant levels at which the principle of autonomy applies in mu-
sic. We conclude that automated measures can supplement
human evaluation of autonomy, but that (a) automated mea-
sures must be supported by sound reasoning about the fea-
tures and timescales used in the measurement, and (b) they
are improved by a having knowledge of the internal work-
ing of the system, rather than taking a black box approach.
We consider multi-dimensional representations of system be-
haviour that may capture a richer sense of the notion of auton-
omy. Finally, we propose an approach to automatically prob-
ing music systems as a means of determining an autonomy
‘portrait’.

Introduction
The word ‘autonomy’ is often used in the discussion of
software-based music-generating systems to capture the
sense in which we desire such systems to create musical out-
put on their own. However, little discussion has been had
about what exactly autonomy means in the context of mu-
sic creation, how it might be measured, and whether it is
indeed a central requirement of music-generating systems,
or even a desirable property at all. In this paper we discuss
the basic issues involved in quantifying autonomy, leading
to an approach to measuring autonomy in music-generating
systems, and interpreting and reasoning about such results.
Our consideration of autonomy in various abstract examples
is presented alongside discussion of how we attribute au-
tonomy in human music creation. We propose that mathe-
matical measures of autonomy are meaningful only when
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supported by reasoning about the choice of observed vari-
ables and timescales used, that systems have to be actively
probed in order to gain an accurate representation of their
autonomy, and that whilst autonomy is an important qual-
ity, it is not a quantity that ought to be maximised. Although
we look at specific statistical procedures we do not, in this
paper, propose an actual applicable measure of autonomy in
music-generating systems.

Defining Autonomy
Autonomy refers to the self-determination of a system, lead-
ing to a number of different formal definitions. Seth (2010),
following a dynamical systems point of view, considers au-
tonomy in terms of a system’s influence on its own future,
as compared to external influences on that future. A sys-
tem can be called autonomous if its own state history con-
tributes to a better prediction of its future when combined
with the state history of any external factors. Alternatively,
a system can be called autonomous in light of its ability to
take care of itself, that is, to control various internal and ex-
ternal elements in order to maintain certain variables within
acceptable bounds (Ashby 1960). Alternative perspectives
on autonomy include goal-directedness, cognitive states and
adaptiveness. For example, Luck and d’Inverno (1995) de-
fine an agent as an “instantiation of an object together with
an associated goal or set of goals” (Luck and d’Inverno
1995, p.265) and an autonomous agent as an agent with a
set of motivations that lead to the generation of goals: i.e.,
the agent’s goals are self-determined.

Variations such as Luck and d’Inverno’s can be seen
as more specific applications of the notion of self-
determination.

A weaker but perhaps more common notion of autonomy
in software systems is that of a system that is self-correcting,
given a predefined function. A driverless car, in this respect,
is understood as being autonomous despite being control-
lable and highly responsive to external factors, and having
no such thing as a ‘motivation’.

In this paper we adopt the notion of autonomy as ‘self-
determination’, understood in terms of the relationships be-
tween the state of a given system and the state of any exter-
nal systems that may have an influence on it. However, by
looking at systems at different time-scales and using differ-
ent measurable features we will attempt to integrate as far as
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possible the range of interpretations found in the literature.

Quantifying Autonomy
Two methods for calculating autonomy as self-
determination are considered by Seth and his colleagues
(Seth 2010; Barnett, Barrett, and Seth 2009). Both are
derived themselves from measures of causality. The first,
Granger causality (Granger 1969) models a time-series
using regression. Any deviation of the time series from the
model is tested to see if it caused by another time series. The
extent to which the second time-series improves the model
of the first determines the Granger causality of the one time
series by the other. Seth (2010) defines G-autonomy as the
extent to which a series’ self-determination is significant,
that is, whether the system is better modelled by including
the system’s own history in its set of causal factors. Seth
(2010) shows that G-autonomy measures for well-known
elementary models from artificial life, an evolved predator-
prey model, and a flocking model, correspond well to our
intuition.

An alternative measure of causality is Transfer Entropy
(TE) (Schreiber 2000). Entropy is a measure of uncertainty
in a system. TE determines the extent to which a system’s
uncertainty is reduced by observations of another system.
Alternatively, this can be understood as the information pro-
vided by one system about the future state of another system.
Both G-causality and TE are limited by our ability to model
any given system with their respective approaches: regres-
sion and statistical analysis. As we shall discuss, since the
temporal modelling of music is significantly more complex
than that of simple artificial life models, the application of
either method is highly dependent on choices of features,
temporal resolution and other factors.

Two reasons for considering TE over G-causality are that
(i) statistical models of music have proven to be successful
in recent work (Pearce 2011), and (ii) statistical models also
give us other information pertaining to the complexity of a
system.

From Schrieber (2000), the Transfer Entropy from a sys-
tem J to a system I is given by:

TJI =
∑

p(in+1, i
(k)
n , j

(l)
n )log

p(in+1|i(k)
n ,j(l)n )

p(in+1|i(k)
n )
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where in is the state of I at time n and i
(k)
n is the combined

state of I for all time steps from n back to (n− k + 1), i.e.,
the state over the window (in, in−1, . . . , in−k+1).

TE gives us a measure which is higher if J has a clearer
influence on I . If we score a low TE, this may either be
because I is indeed not influenced by J or that there is an
influence but it is not apparent. The latter could be because
we are looking at the wrong features, or the wrong temporal
resolution (for example if we have no way of telling that one
event happened before another we cannot expect to identify
causality), but given that the measure is based on the pre-
dictability of I , it could also be because we can obtain a

perfectly good model of I even though it is influenced by
J . This can happen if J is very predictable and I is directly
determined by J . Equally, if I is extremely unpredictable,
then neither the history of I nor the history of J will provide
information about its future state and TE will also be low.

Bertschinger et al. (2008) provide discussion of a num-
ber of similar information theoretic definitions of autonomy,
largely based on the mutual information between two pro-
cesses, similar to TE. Their definitions take into account the
related factors non-heteronomy, self-determination, closure,
and causality and form the basis for a rich set of possibly
useful measures. Since we do not attempt to apply auton-
omy measures to music performance in this paper we will
not cover these specifics. However, a number of the concepts
brought up by Bertschinger et al. appear in our discussion.

As we have said, before being useful these information
theoretic definitions require significant decisions to be made
about what data is extracted from specific interaction scenar-
ios. The following section discusses such musical scenarios.

Autonomy in Musicians and Music Software
In a range of research initiatives, software is tasked with the
production of musical output. These various projects span a
range of goals and perspectives with respect to autonomy.
Three reasonably clear distinctions can be made between
the goals of such projects: (i) systems that are tasked with
the production of final musical outputs, versus systems that
are used as idea-generators, from which a music creator will
choose output; (ii) systems that generate variation but do
not employ any selection process versus systems that engage
some form of selection process; (iii) systems that compose
music offline versus systems that perform live with other
(usually human) musicians.

In this paper we will consider the notion of autonomy
across this range of scenarios, but with particular attention
paid to the last of these distinctions, for which the notion of
autonomy can be seen to apply at two different levels.

Performance Autonomy
The first author’s research is concerned with Live Algo-
rithms (Blackwell and Young 2004; Blackwell, Bown, and
Young 2012). These are are systems that perform interac-
tively with other musicians, rather than composing offline,
that generate final outputs, rather than sample material for
selection, but that may or may not employ selection pro-
cesses in determining their output.

Blackwell’s definition of an autonomous musical agent in
(Blackwell, Bown, and Young 2012), which should be un-
derstood as an aspirational goal of Live Algorithms research
rather than a description of existing Live Algorithms, is an
agent which goes beyond mere automation in determining
responses to musical input, by deriving novel but relevant
responses. The novelty requirement, if fulfilled, moves the
origin of the system’s behavioural repertoire from the sys-
tem’s design to the system itself.

We can examine the essence of the term autonomy by
comparing two contexts, driverless cars and improvising
musical agents, using Seth’s minimal formalisation of self-
determination, and the mathematical notion of influence
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given in TE. This will illustrate how the contextual elements
that we take into account, including the choice of timescales
and appropriate feature selection, are highly significant in
the application of the term.

We can say that a driverless car is autonomous compared
to a regular car, with respect to the driver. This can be quanti-
fied by examining the relationship between two time-series:
the state of the car and the state of the driver. If the driver
time-series is a good predictor of the car-time series then
this is evidence that the car lacks autonomy, whereas if the
car time-series makes a significant contribution to predicting
its own future states when added to the driver time-series,
then this is evidence of self-determination and therefore au-
tonomy. When the driver of a regular car turns the steering
wheel or hits the brakes, he or she clearly influences the state
of the car and as such the driver’s actions could be used to
faithfully predict the car’s response. The ‘driver’ of a driver-
less car may be eating lunch or playing chess while the car
turns, accelerates and brakes. In this case the driver’s actions
will not be good predictors of the car’s future state. Rather,
with respect to the driver, at least, the car’s own past state
is a better predictor of its own future state and the car can
therefore be considered autonomous (see Figure 1).

Compare this to an automatic hand drier (i.e., one which
senses the presence of your hands rather than relies on a
push-button). We know that the sensor is simply a drop-in
replacement for the button, serving exactly the same oper-
ational function, and yet the argument might be made that
the automatic hand drier is behaving autonomously, observ-
ing its environment and taking appropriate actions, unlike
its passive button-operated counterpart. From the perspec-
tive of predictability and causality, however, this distinction
is irrelevant.

Whether actual time-series analyses corroborate such de-
terminations of causality will depend on a number of factors;
the points in time the system is being observed, the tem-
poral resolution, the measured values and the system con-
figurations. For example, the ‘driver’ of the driverless car
punches in coordinates, and these are a good predictor of
the future state of the car. At a coarse time-scale, taking
into account this input information, the car is no longer au-
tonomous. Equally, naı̈ve measurements of the state of the
driver of a regular car, his or her foot position, for example,
may be too coarse grained for us to identify the variables that
influence the car. In such cases, although we suspect that the
driver controls the car, we would lack the data to verify this.

The same analysis can be applied to an improvising musi-
cal agent. Again, the autonomy can be discussed in terms of
its relationship to another entity, for example a human mu-
sician, and in comparison to a suitably comparable entity,
such as an electronic musical instrument or a tape-player,
where an equivalence between interaction contexts can be
established. The state of the electronic musical instrument,
like the regular car, could be successfully predicted by infor-
mation pertaining to the state of its controller, a human mu-
sician. A musical agent, by comparison, would be less pre-
dictable on the basis of information pertaining to a human
improvising partner, even though we should expect the sys-
tem to respond in some manner to the human, and therefore
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Figure 1: Different sampling timescales and feature mea-
surements pertaining to the causal relationships between
driver and ‘autonomous’ car. Top: the driver’s commands
are a good predictor of the car’s future location. Bottom: the
driver’s activity state during a journey is not a good predictor
of the car’s speed.

in some sense be influenced (or controlled or manipulated).
A tape player playing back pre-recorded music, meanwhile,
would be largely unaffected by any musician playing along
to it. This poses an affront to our instinctive understanding
of autonomy, to which there are two answers.

Firstly, our intuition is that the tape player is not au-
tonomous because the tape player is entirely predictable,
and we can quantifiably show this if we play back the tape
enough times in order to build an accurate model of its
output. If a sufficiently high-order statistical model of the
tape-player is made it would demonstrate low entropy. Not
only is the tape-player’s own history a better predictor of
its own future output than any other entity’s history is of it,
but it is a perfect predictor. Our notion of autonomy as self-
determination could be modified to incorporate the caveat
that a completely predictable system is not autonomous.

Bertschinger et al. (2008) extend this condition, in prin-
ciple, to significantly more complex systems that include
adaptive behaviour: “if one knows what is optimal for the
system in a certain environment, one might predict the ac-
tion, behaviour or state of the system from the environment...
Thus in case of an adaptive system we require that it is ca-
pable of pursuing different objectives in the same environ-
ment” (Bertschinger et al. 2008, p.334). However, since the
content of a tape might be enormous and hugely diverse, we
cannot be sure that ‘cheat’ systems will be more predictable
than ‘genuine’ systems, even if we impose this requirement.

The alternative, as discussed with cars, is to choose a dif-
ferent time-scale and involve different variables that reflect
our intuition that the tape-player is not autonomous. Viewed
from the point of view of an operator we could argue that
the audio signal that it outputs is irrelevant and that its es-
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sential operational variables are (i) whether or not it is play-
ing, (ii) which tape is loaded, (iii) the volume setting, and
so on. Such variables are equally good at describing the au-
dio output of the system, but now reveal instead a lack of
autonomy of the tape-player, which does not choose what
tapes it plays, set itself playing, or control its own volume.
This question of different frames with which to view au-
tonomy is also discussed by Bertschinger et al. (2008) with
reference to a study of gliders in the Game of Life. Whilst
gliders demonstrate measurable autonomy in their move-
ment through open space, through their being critical self-
predictors of their own future state, most interactions be-
tween gliders and other objects result in the death of the
glider. Since the non-existence of the glider cannot be han-
dled by the particular frame for measuring glider autonomy
(readings of the state of the glider) the problem is conspicu-
ous.

Creative Autonomy

We can also view the Live Algorithm in terms of a nested
hierarchy of goals and their related actions, and consider au-
tonomy with respect to each goal. Here the reasoning ap-
plies equally to systems that compose music offline. Like
the driverless car, but unlike humans and animals, the sys-
tem can be seen as fulfilling certain goals that are actu-
ally the goals of its designer. At this top level, the system
does not derive its own goals from essential motivations
and so does not qualify for Luck and d’Inverno’s defini-
tion of an autonomous agent. However, an advanced Live
Algorithm might fulfil an ultimate musical objective by, for
example, deriving its own ‘conceptual spaces’ (Gärdenfors
2004) within which it identifies subgoals that ultimately sat-
isfy the programmer’s motives.

Whilst we can therefore build systems that respond to this
advanced notion of autonomy, there is a very real danger of
setting up hoops to jump through that do not lead to any
actual technical progress. In a computer program which dy-
namically constructs complex data structures, for example,
we may choose to refer to various objects or functions as
goals and motivations, and may arbitrarily divide systems
into subsystems so that certain of these subsystems score
on a measure of autonomy with respect to others. As we
have seen, obtaining a high quantitative measure of auton-
omy may prove to be trivial. Measures of creative autonomy
should therefore be backed up with reasonable arguments
about the relevance of the contextual factors presented.

We can also consider autonomy in terms of musical influ-
ences over longer timescales. In this respect autonomy may
capture the notion of originality in creative work. Using the
same notion of predictability, if an existing body of music is
a good predictor of the output of a new composer then, as
with the earlier examples, we would declare that the com-
poser lacks autonomy. But as has been widely discussed in
the literature of creativity, e.g., (Boden 1990), too much nov-
elty implies low creativity. We expect music to be original
but to clearly place itself in the context of existing music,
thus be partially predicted by it.

Human Evaluation
As with the limitations of data capture and complexity that
apply to mathematical methods, humans make judgements
about qualities such as autonomy based on limited informa-
tion. A source of inspiration for judging the quality of a soft-
ware system that has been designed to create original music,
or engage in live improvised performance with humans, is
the Turing Test (Turing 1950). Alan Turing’s famous test,
although a directly usable format for testing machine intelli-
gence, was philosophically motivated, providing the impor-
tant clarification that there cannot be any objective basis for
believing that human intelligence has an essence that is un-
obtainable for machines.

The same sentiment can be applied to music. However, as
Ariza (2009) explains, “musical Turing Tests do not actu-
ally conform to Turing’s model” (Ariza 2009, p. 49). “Mu-
sic, as a medium remote from natural language, is a poor
vessel for Turing’s Imitation Game” (Ariza 2009, p. 66). In
conversation, we can interrogate our subject in order to un-
derstand their thinking. Language is the special human fac-
ulty that allows us to accurately convey meaning and makes
this possible. Music, as far as we know, does not share this
property. Cross (2008), for example, argues for music’s am-
biguity and “floating intentionality” as essential to its par-
ticular social function. Music may express emotion, but a
convincing format for interrogating a system on emotional
grounds or via emotion has yet to be proposed. As well as the
weakness of the medium, Turing’s test is particularly poorly
applied, as occasionally happens, when the ‘interrogation’
consists of listening to a piece of music and trying to de-
cide whether it was composed by a computer based only on
the content of the music. A recent example of this is given
in The Guardian newspaper’s ‘Turing Test’ for the Iamus
music system1, for which no additional information can be
found about whether, for example, the system was primed
with human-composed primitive elements. Although, in this
and other existing cases, we may be able to tell the system
apart from human composers due to something not sound-
ing quite right, instances where we were unable tell the sys-
tem apart from human composers would not be evidence of
human-like intelligence, due to this limitation of music as a
medium.

Human-like autonomy is implicated both as the element
a judge is interested in detecting in such tests, and the el-
ement that eludes us. We are interested in determining au-
tonomy because it is a key component of ‘creative compo-
sition’, as discussed in the previous section. However, au-
tonomy eludes detection through interaction because of (a)
a lack of information with which to make a judgement, par-
ticularly in crude listener tests, and (b) a lack of expertise at
detecting autonomy in novel systems: it is not actually some-
thing we do, since we take for granted that other humans are
autonomous and have a template for how that autonomy is
manifest. This implies that judging systems requires at least
a process of interrogation akin to the original Turing Test,
and that automated support tools for measuring autonomy

1http://www.guardian.co.uk/science/poll/2012/jul/01/musical-
turing-test-audio-clip-computer, accessed July 15th 2012.
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may supplement human judgements, along with a technical
or at least rough conceptual understanding of the systems
being judged. Thus as knowledge of a person’s life history
may affect our judgement of their musical output, so might
knowledge of the working of a software system.

Other human evaluation methods of interactive software
systems have been investigated. One example is the work
of Hsu and Sosnick (2009) who devised a system of ques-
tionnaires for both improvisers and audience members with
a view to evaluating and comparing two of their systems.
There were specific questions relating to the responsiveness
of the system as well as more high-level ones regarding the
performance experience as a whole.

Collins (2006) used interviews with improvising musi-
cians, based on the contextual inquiry model, to evaluate a
selection of interactive software systems. The main results
reported concerned the subjective experiences of the musi-
cians (e.g. comfort, stimulation) and the extent to which they
attributed agency to the system. Such tests can be combined
with objective measures of autonomy, and a critical under-
standing of the operation of the system, to build a better
understanding of when and why humans perceive creative
agency.

Conclusion
Autonomy is clearly an important and desirable property in
software that creates music, being essential to the notion of
‘creation’. But, defined as ‘self-determination’, the auton-
omy that we seek in autonomous music systems is not some-
thing that should be maximised to the point of freedom from
influence. Other properties will be useful to complement au-
tonomy: agency, complexity and intelligence. Furthermore,
our discussion also suggests that a singular measure of au-
tonomy itself may not actually be as interesting as the vari-
ous measures that can be considered to constitute it, such as
TE and other factors discussed by Bertschinger et al. (2008):
non-heteronomy and closure. For example, Figure 2 shows
a proposed sketch of what various systems may look like
on a plot showing the combined entropy of input, X , and
response, Y (x-axis), and transfer entropy from X to Y (y-
axis). Different systems appear as loci, their measured posi-
tion on the plot varying according to what input they are fed
(see figure caption).

Such multi-dimensional representations may underlie a
richer notion of autonomy. In such cases we are essentially
probing one software system with another in order to ob-
tain a better sense of the system’s autonomy in a range of
contexts. This may be useful in categorising systems and
searching for interesting forms of behaviour. For example,
in Figure 2, a range of inputs may be better at distinguish-
ing a smart musical agent from a dumb instrument, where
clearly a single measurement will not offer much clarity.
Bertschinger et al. (2008) propose ‘interventions’ in the in-
teraction between a system and its environment that would
provide more precise information about the causal and self-
determining behaviour of the system than could be under-
stood by simple observation. In our view, the probe system
could generate input patterns to pass to the subject system,
and would analyse the results to determine their influence.

TEx→y

Exy

x0

x1

x0

x1
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Figure 2: A sketch of possible relationships between overall
entropy (E) of the combined states of the XY-system (x-axis)
and transfer entropy (TE) from X to Y (y-axis) for differ-
ent systems under a range of input conditions, where X is
the input to the system (e.g., provided by the experimenter)
and Y is the output of the system. Each dotted line repre-
sents a possible locus within this E-TE space occupied by a
given system. Each locus is a line bounded by two extremes,
low entropy, X0 and high entropy, X1 inputs. A ‘dumb’ re-
active system, such as a musical instrument, demonstrates
high TE, but this is invisible under low input entropy condi-
tions. A completely random system never exhibits TE, i.e.,
external influence. A musical agent may contribute entropy
to a system despite low entropy in the input and would only
exhibit moderate external causality (TE). The grey triangle
is not accessible since systems with low combined entropy
will produce low TE.

The probe system could be considered as a simulation envi-
ronment in which the subject system is analysed. Assuming
the target system could be operated precisely by the probe
(run it in the same thread, reset it to specific states, and as-
sume control of any random number generation built into
the system) interventions could include comparing different
inputs in identical scenarios, or the same inputs applied to
different internal states in the system. The result would be
a portrait of a system rather than a specific measure. Figure
2 is an example of what such a portrait may look like, al-
though the relationship between system entropy and transfer
entropy is just one proposed representation and is not likely
to be the most interesting.

Our discussion has also elaborated upon two major
caveats to consider when attempting to measure autonomy
in music-generating systems.

Most importantly, the thing being measured and the fea-
tures and time-scales that are used in the measurements
can lead to inappropriate measures for autonomy, both too
high and too low. Ultimately, sound reasoning needs to be
used in deciding what time-scales and features constitute a
good measure of autonomy, as with the example of the tape-
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player. With the limits of current music analysis, this is the
main reason why measuring autonomy is not presently fea-
sible. In the long term we expect that criteria for interpret-
ing autonomy relevant to different musical contexts can be
defined. For example, Blackwell’s (2012) elaboration of au-
tonomy in Live Algorithms provides important detail about
the relevant context, although it remains a challenge to for-
malise the features necessary for measuring this.

Secondly, in order to make informed judgements about
autonomy we may need to know about the design of systems
and not just view them as black boxes. With humans, there
is the reasonable and innate assumption that others are like
ourselves (i.e., autonomous), but our discussion of human
evaluation outlines why we cannot simply use human-ness
as a benchmark for the measure of machine autonomy. In-
deed, we may have more success if we turn this on its head
and discover examples of machine autonomy that can act as
benchmarks for understanding human cultural behaviour.
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