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Abstract
Led by the success of neural style transfer on visual
arts, there has been a rising trend very recently in the
effort of music style transfer. However, “music style” is
not yet a well-defined concept from a scientific point of
view. The difficulty lies in the intrinsic multi-level and
multi-modal character of music representation (which
is very different from image representation). As a re-
sult, depending on their interpretation of “music style”,
current studies under the category of “music style trans-
fer”, are actually solving completely different problems
that belong to a variety of sub-fields of Computer Mu-
sic. Also, a vanilla end-to-end approach, which aims at
dealing with all levels of music representation at once
by directly adopting the method of image style transfer,
leads to poor results. Thus, we vitally propose a more
scientifically-viable definition of music style transfer
by breaking it down into precise concepts of timbre
style transfer, performance style transfer and composi-
tion style transfer, as well as to connect different aspects
of music style transfer with existing well-established
sub-fields of computer music studies. In addition, we
discuss the current limitations of music style modeling
and its future directions by drawing spirit from some
deep generative models, especially the ones using unsu-
pervised learning and disentanglement techniques.

Introduction
Background of Automated Music Generation
The practice of music automation can be traced back to
Guido D’Arezzo, a famous medieval musician who designed
a rule-based vowel-to-pitch mapping algorithm to generate a
sequence of notes (Loy 1989). While “crafting music” is still
the mainstream, algorithmic composition, or in general au-
tomated music generation has become more and more pop-
ular nowadays with the development of modern computers.
On the one hand, fast CPUs offer dramatic speedup of ex-
perimentations, so that people can test different ideas much
more rapidly. In addition, various computer-music pro-
gramming languages (Dannenberg 1997; McCartney 1996;
Boulanger 2000; Wang and Cook 2003) have been invented
since the late 1950s, which further boosted the efficiency
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of music creation via programming. On the other hand, ad-
vanced computational models and data-driven algorithms
have empowered computers to generate more human-like
music via inheriting certain statistics and styles from the
training sets. Recently, with the breakthroughs in artificial
neural networks, deep generative models have become one
of the leading techniques for automated music generation
(Briot, Hadjeres, and Pachet 2017). For the examples of
mimicking J.S. Bach alone, we have seen BachBot (Liang
2016), DeepBach (Hadjeres and Pachet 2016), CNNBach
(Huang et al. 2017), etc., and most of them can generate con-
vincing results.

Despite these promising progress, people still struggle to
generate both natural and creative music through automa-
tion. In general, algorithms with weak constraints are often
“too random” and rarely make human-like music, though
many works are interesting and creative from a contempo-
rary perspective. On the other hand, algorithms with strong
constraints (either explicitly constrained via rules or implic-
itly constrained by training data) are mostly “too flat” and
lack the exploration and dynamic that can be easily sensed
from genuinely creative works.

Music Style Transfer: Importance & Challenges
Image style transfer techniques (Gatys, Ecker, and Bethge
2015) inspired the hope to solve the paradox above. By sep-
arating and recombining music contents and music styles of
different pieces, it is possible to generate new music that is
both creative and human-like. In other words, we can still
use our favorite data-driven algorithms but twist the con-
straints or optimizations in general by applying them sep-
arately to different aspects (i.e., content and style) of music.

Such effort is named after music style transfer. However,
there is a severe problem: “music style” is a fuzzy term that
can literally refer to any aspect of music, ranging from high-
level compositional features (such as tonality and chord se-
quence) to low-level acoustic features (such as sound texture
and timbre). This ambiguity is mainly due to the intrinsic
multi-level, multi-modal character of music representation
— music can be read, listened to, or performed, and it all
depends on whether we are relying on score (the top-level,
abstract representation), sound (the bottom-level, concrete
representation), or control (the intermediate representation).
This is very different from image representation, and so far
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no end-to-end system can deal with all levels of music rep-
resentation together in an elegant manner.

Consequently, most studies only focus on a certain
level/modality of music representation and therefore have
different interpretations of music style. Depending on the
interpretation, the essence of music style transfer also varies
a lot and may even refer to problems evolved from different
sub-fields of computer music, such as algorithmic compo-
sition, expressive performance, or sound synthesis. In other
words, we are facing an issue of the many-to-one collapse of
keyword definition. Without further action, an accumulated
upcoming literature all named after “music style transfer”
would lead to a great confusion of the underlying problems
to the readers as well as a risk to ignore the treasures in com-
puter music before the age of deep learning.

In this position paper, we contribute a precise definition of
music style transfer based on the uniqueness of music rep-
resentation. We start from an overview of music representa-
tion in Section 2 in order to formally introduce the defini-
tion in Section 3, where we also connect different types of
music style transfer with existing well-established computer
music studies. In the end, we discuss the current limitations
and possible future directions of music style modeling by in-
specting current unsupervised learning and disentanglement
techniques of deep generative models.

Multi-level and Multi-modal Representation
Music is widely considered a universal language and there
are many previous discussions on music representations
(Dannenberg 1993; Wiggins, Müllensiefen, and Pearce
2010; Müller et al. 2013). The relationship between mu-
sic notation (score) and actual sound is similar to the one
between text and speech. Score serves as a symbolic and
highly-abstract visual representation to efficiently record
and communicate music ideas, whereas the sound is a set of
continuous and concrete signal representations that encode
all the details we can hear. Therefore, we can picture the two
representations at different levels, with the score at the top
and sound at the bottom (Dannenberg 1993).

In the middle, people often insert an intermediate repre-
sentation of performance control. The reasons are twofold.
First, musical semantics and expression rely heavily on per-
formance control that a funeral hymn can sound really happy
by simply tripling the tempo. Second, the performance con-
trol for many instruments (e.g., a piano keyboard) can be
easily parameterized and therefore very machine friendly.
Note that different levels of representation are not solely mu-
tually exclusive, but the multi-level property offers us a use-
ful tool to better understand the essence of music content and
style. To fully comprehend different aspects of music style
transfer, we shall first investigate the multi-level property of
music representation more in-depth.

Score Representation
Score representation exists in many forms, including sheet
music notation, lead sheet, chord chart and numbered musi-
cal notation. Most of them are highly symbolic and encode
abstract music features indicated by the composer, including

Figure 1: An example of western music notation.

tonality, chord, pitch, timing, dynamics and rich structure in-
formation such as phrases and repetitions.

The key character of score representation is that the en-
coded features are mostly discrete with a mix of measure-
ment scale. Take western music notation (Figure 1) for ex-
ample. Note onset is a ratio variable and lies on integer
multiples of a certain time unit (usually 1/8 beat is short
enough). Pitch is an interval variable, whose corresponding
fundamental frequency always lies in a discrete sequence.
(E.g., the frequency of C4 in the equal-tempered tuning
is 261.63 Hz, the frequency of its successive pitch C\4 is
277.18 Hz, and there is no other pitch frequencies lie in
between.) Dynamics is an ordinal variable, usually ranging
from ppp(the softest) to fff (the loudest). Many other sym-
bols are nominal variables, such as chord types and repeat
signs. Such characters bring a challenge for generative mod-
els since discrete optimization is in general very difficult and
a mixed scale makes some numerical operations impossible.

Performance Control Representation
A performance control encodes an interpretation of the cor-
responding score, rely on which a performer turns the score
into performance motions. A commonly used control rep-
resentation is MIDI piano roll (Figure 2), where each note
is encoded by its pitch, dynamics, onset (starting time), and
duration. It also has a number of controllers such as pedal
and pitch bend for more performance nuances. To be spe-
cific, pitches are integers in semitones with C4 being 60,
dynamics are integers in velocities units (speed with which
the keys are hitting) ranging from 1 to 127, and timings are
floating point numbers in seconds.

Compared to score representation, the key character of
performance control is the enriched and detailed timing and
dynamics information, which more or less determined the
musical expression of a performance. On the other hand,
most structural information such as phrase, repetition, and
chord progression is flattened and become implicit during
the translation from the score to performance control. Note
that performance control is largely independent from the ac-
tual instrument; it is not yet the final music sound and still
considered a middle-level abstraction.

Sound Representation
Sound, the concrete signal representation, can be seen as an
acoustic realization of the corresponding performance con-
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Figure 2: An example of MIDI piano roll representation.

Figure 3: A waveform example where the horizontal axis
represents time and the vertical axis represents amplitude.

Figure 4: A spectrogram example where the horizontal axis
represents time, vertical axis represents frequency, and the
color represents energy distribution on different frequencies.

trol via a certain instrument. Two commonly used formats
for sound representation are waveform (Figure 3) and spec-
trogram (Figure 4).

The key character of sound representation is purely con-
tinuous and rich in acoustic details such as timbre, articula-
tion, and other nuances not available in other levels of rep-
resentation. At the expense of such acoustic details, all sym-
bolic abstractions together with precise performance control
information become no more explicit and get hidden in the
audio.

Representation, Content, and Style
Table 1 shows a summary of different music representations.
It is important to notice that the multi-level architecture ac-
tually has already implied the essence of music content and
music style, i.e., music content is the information extracted
through abstraction (from a lower level to a higher level),
while music style is the information enriched through in-
terpretation and realization (from a higher level to a lower
level).

Table 1: A summary of music representations.
Sensory Unique Scale of Type of
system features measure data

structure &Score
visual symbolic all discrete(top)

abstractions

expressiveControl
motor timing &

interval
mixed(middle)

dynamics
& ratio

Sound acoustic contin-
(bottom)

auditory
details

ratio
uous

Thus, a complete end-to-end system for music style trans-
fer should at least fulfill three requirements: 1) be cross-
modal and flexible to deal with different measurement
scales, 2) automatically extract the performance control and
score information from a sound input, and 3) freely manip-
ulate music representations at any level. However, we have
to accept the fact that such systems do not yet exist and may
not emerge in the near future. The second requirement alone
remains an open problem (especially for polyphonic music),
and has been the main focus of the whole field of music in-
formation retrieval for many years.

Therefore, it is beneficial to first solve style transfer for
each level of music representation and gradually integrate
different components into one system. A hasty attempt at an
end-to-end music style transfer system by directly adopting
the algorithms for image style transfer (Dmitry and Vadim
2016; Gao 2017) would only lead to results that sound like
a casual remix of different pieces of music.
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Music Style Transfer: A Precise Definition
and Related Work

We present the precise definitions of music style transfer
for each level of representation in a bottom-up order. They
are: 1) timbre style transfer for sound, 2) performance style
transfer for performance control, and 3) composition style
transfer for score. We also include a brief overview of the
related work and connect them with existing sub-fields of
computer music.

Timbre Style Transfer
Definition 1: Timbre style transfer applies to sound rep-

resentation. It means to alter the timbre information in a
meaningful way while preserving the hidden content of per-
formance control.

A successful timbre style transfer would allow us to re-
produce a trumpet performance by a flute with the same mu-
sical expression. Timbre style transfer is closely related to
sound synthesis (Russ 2004), especially the studies aiming
to synthesize different sound of acoustic instruments. The
difference is that timbre style transfer requires a disentan-
glement of timbre (style) and performance control (content)
and implies that there is room to create new timbre through
the combination of different ones.

Two recent pioneer studies on timbre style transfer are
Google’s WaveNet autoencoders (Engel et al. 2017) and
Stanford’s audio spectrograms neural style transfer system
(Verma and Smith 2018). The former built an autoencoder
for raw waveform using WaveNet (a dilated temporal con-
volutional neural network). The bottleneck hidden layer is
therefore considered a timbre representation and used to
create new timbre through linear interpolation. The latter
treated audio spectrograms as images and applied image
style transfer with additional carefully designed constraints
on temporal and frequency energy envelopes.

We shall also see the limitations. For both works, the dis-
entanglement of timbre and performance control informa-
tion is not yet very successful, especially when the length
of the processed audio unit is long. Also, from a synthesis
perspective, the sound quality of synthesized instruments is
still far from the state-of-art learning-based synthesis tech-
niques (Hu 2004) and worth further investigation. As a side
note, VisualSoundtrack (Ananthabhotla and Paradiso 2017),
which is named after “style transfer”, is actually a synthesis
system. It requires human inputs of pitch and no disentan-
glement is involved.

Performance Style Transfer
Definition 2: Performance style transfer applies to perfor-

mance control representation. It means to alter the control
information in a meaningful way while preserving the im-
plicit score content.

A successful performance style transfer would allow us
to transfer Louis Armstrong’s interpretation of Summertime
to the one of Miles Davis. It is closely related to expressive
performance rendering, which studies how to convert static
scores into human-like expressive performances by different
computational models. (Kirke and Miranda 2009; Widmer

and Goebl 2004; Simon and Oore 2017) The difference is
that performance style transfer requires a disentanglement of
control (style) and score information (content) and implies
that there is room to create new musical expression through
the combination of different controls.

As far as we know, there is no work on performance
style transfer yet, though performer identification (Ramirez,
Maestre, and Serra 2010; Stamatatos and Widmer 2005) has
been studied for over a decade. One close attempt is the
recent Duet Interaction system (Xia 2016) that can gener-
ate an expressive accompaniment based on the performance
style of a solo, but it requires a pre-defined score and can-
not create new performance styles. As a side note, the work
named after “neural translation of musical style” (Malik and
Ek 2017) is actually an expressive performance rendering
system, which focuses on dynamic generation given a score
input. Thus, performance style transfer remains a brand-new
field worth exploring.

Composition Style Transfer
For many forms of score, there is room for further abstrac-
tion. Take western music notation for example, the most
identifiable score feature, in general, is the melody con-
tour and sometimes with the structural functions of harmony
(Schoenberg and Stein 1969). This is especially the case for
tonal music.

Definition 3: Composition style transfer means to pre-
serve the identifiable melody contour (and the underlying
structural functions of harmony) while altering some other
score features in a meaningful way.

A successful composition style transfer would allow us
to create variation, improvisation, re-harmonization, or re-
arrangement of a piece of music. A representative master-
piece is the Twelve Variations on “Ah vous dirai-je, Maman”
by Mozart. Take the first variation for example, it mostly
preserved the melody contour and chord progression of the
theme and altered the rhythm and texture to a large extent.
Recent high-quality pieces (made by human) include: Im-
provisation of “Mary had a little lamb”1, a Korean style
Carmen Overture2, and a Chinese style Mozart Sonata3.
Composition style transfer is closely related to stylistic auto-
matic composition, which can be traced back to David Cope
(Cope and Mayer 1996). The difference between these two
topics is that composition style transfer requires a disentan-
glement of different score features and implies that there
is room to create new types/idioms of score features (such
rhythm, texture, and chord progression) through the combi-
nation of different ones.

Pioneer studies on automatic composition style transfer
include (Pati 2018; Zalkow 2016; Kaliakatsos-Papakostas et
al. 2017), where the first two deal with monophonic com-
position and the last one deals with polyphonic composi-
tion. The work (Pati 2018) builds pitch and rhythm models
separately for different music genres and then create new

1https://youtu.be/Q6Usd3 fbq8
2https://youtu.be/hKv2 UCo1ZQ
3https://soundcloud.com/wang-michael-452158298/sets/style-

transform-of-mozart-sonata

4



melodies through the combination of the pitch model of one
genre and the rhythm model of another genre. The works
by (Zalkow 2016; Kaliakatsos-Papakostas et al. 2017) rely
on the power of explicit rules to modify melody and merge
different chord progressions, respectively. The work (Lat-
tner, Grachten, and Widmer 2016) enforces certain music
structures by considering additional template-matching con-
straints in the optimization procedure.

The demo pieces created by these early studies are still
quite immature, especially compared to the pieces made by
humans. The major problem is actually not “how to trans-
fer the composition style” but “how to model it” in the first
place. Current composition models still lack the capacity or
representation of music structure and the hidden “grammar”
of chord progressions. Note that most successful cases of
the automatic stylistic composition are related to Bach, and
at least for non-experts the structure of Bach’s compositions
is rather local and easy to perceive compared to many other
composers. This is unlikely to be a coincidence and worth
the attention of future studies.

Future Directions of Music Style Modeling
How shall we model the styles of composition, performance,
and timbre for a better transfer effect? Most current studies
use the following three approaches to model music styles: 1)
to inherit the style implicitly from the training set (Hadjeres
and Pachet 2016; Liang 2016; Huang et al. 2017; Xia 2016),
2) to use simple style embedding for generation (Mao, Shin,
and Cottrell 2018), and 3) to apply style-related constraints
for generation. In other words, they all require a manually-
defined style representation or style label for generation.

As stated earlier, style transfer calls for disentanglement
of content and style. It would make more sense to learn the
disentanglement rather than crafting it by hand. In the field
of deep generative modeling, learning disentanglement has
already attracted a vast amount of attention (Thomas et al.
2017; Karimi et al. 2017; Larsson, Nilsson, and Kågebäck
2017; Kim and Mnih 2017). For image generation tasks, ad-
versarial training has achieved disentanglement of latent fac-
tors and been applied within the generative adversarial net-
work (Chen et al. 2016) and variational auto-encoder (VAE)
(Mathieu et al. 2016) framework. A pioneering study has
applied the VAE framework for algorithmic composition
(Roberts, Engel, and Eck 2017). Though the convincing re-
sults are still bounded by the length of two bars, it is con-
ceivable to apply it for style transfer task with some modifi-
cation.

Upon a successful disentanglement, style can be consid-
ered as one of the latent factors and style transfer can be ac-
complished in two steps. The first is to disentangle a “style”
code from the hidden representation that generates the mu-
sic, and second is to “plug” such code into an appropriate
sequence generation framework that preserves all other fac-
tors.

Conclusion
In conclusion, music style transfer is a new research field
which promises novel computational tools to generate both

creative and human-like music. Questions like “what if
Miles Davis wrote Twelve Variations on ‘Ah vous dirai-je,
Maman’ and performed it on a flute” would be no more
purely imaginary. In order to generate meaningful results,
future works should be aware of the multi-level, multi-modal
music representation and be clear whether the focus is tim-
bre style transfer, performance style transfer, or composi-
tion style transfer. Also, the automatic disentanglement of
content and style representation is the key for high-quality
style transfer algorithms and worth the effort from the whole
field, and we believe that it is an efficient way, if not the
only way, towards a complete end-to-end, cross-modal mu-
sic style transfer system.
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